
0.0.0.1. Workflow:

1. Post todo notes on structural content that needs to be there.

2. Dissection: create subsections / paragraphs and split todo notes into smaller ones.

3. Write paragraphs replacing todo notes. put them in a \draft{} command.

4. Get feedback by a different person (work on the granularity of draft sections):

a) Fix spelling and errors directly

b) Add todo/clarify notes if something requires discussion to fix

c) Start discussions in comments if you are unsure about something

d) Integrate the feedback

5. After consensus was reached on a \draft section, change it to \final

If you write information that is only valid for the intermediate report and must be
removed or revisited for the final document version, encapsulate it in a \nonfinal{} com-
mand.
If you refer to a file in our code base, enter the full path relative to the environment
base and encapsulate it in an \sfile{} command, example: \sfile{riscv-tools/bin/riscv-
uart-flash}
If you refer to a git repository, put it in a \repo{} command, example:
\repo{riscv-llvm}
When discussing a problem that occurred or may occur (user guide), state the exact
problem in a \problem{} command and append the solution immediately after that in
either a \solution{} or \workaround{} command.

1

Paderborn CPU Core for Approximate
Computing (PACO)

Implementation Document (intermediate)

September 25, 2016

Contents

0.0.0.1. Workflow: . 1

I. User Guide 6
0.1. Introduction . 6
0.2. How to read the User Guide . 7

0.2.1. Component Overview . 8
0.2.2. User Guide Overview . 8

0.3. Step-by-step guide . 8
0.3.1. Setting up the environment . 8

0.3.1.1. Using the Setup Script 11
0.3.1.2. Manual Setup . 11

0.3.2. Generating the CPU core . 12
0.3.2.1. Note: . 12

0.3.3. Synthesizing the system for FPGA instantiation 12
0.3.4. Compiling programs . 13

0.3.4.1. Examples . 13
0.3.4.2. Manual steps . 13

0.4. Run PACO Approximate Applications . 17
0.4.1. Simulate using the C Emulator . 17
0.4.2. Simulate using QEMU . 17
0.4.3. Running Programs on an FPGA Instantiation 18

2

II. Developer’s Guide 21

1. Overview 21
1.1. Current state of implementation . 23

1.1.0.1. Environment . 23
1.1.0.2. Compiler . 24
1.1.0.3. Hardware: ALU . 24
1.1.0.4. Hardware: LUT . 24
1.1.0.5. Problems . 25
1.1.0.6. Timeframe . 26

2. Environment 27
2.1. Generating the environment . 27

2.1.1. Original code base . 27
2.1.2. Modified code . 27

2.1.2.1. RISC-V toolchains . 30
2.1.2.2. Rocket core . 30
2.1.2.3. Rocket SoC . 30
2.1.2.4. Rocket SoC bootloader 30
2.1.2.5. RISC-V python library 31
2.1.2.6. RISC-V tests . 31
2.1.2.7. QEMU . 31
2.1.2.8. Virtual Machine . 31

2.2. Tools . 32
2.2.1. RISC-V tests . 33

2.2.1.1. Testing approximate instructions/hardware 33
2.2.2. Rocket Chip C Emulator . 34

2.2.2.1. Changes . 35
2.2.3. QEMU . 35

2.2.3.1. Usage . 35
2.2.3.2. Modifications done . 36
2.2.3.3. Further modification . 36
2.2.3.4. Adding new decoding masks 37
2.2.3.5. Adding new major opcodes 37
2.2.3.6. Adding decoder / instruction translation 37

2.2.4. UART debug interface (flashing tool) 37
2.2.4.1. UART interface . 38
2.2.4.2. UART Out-of-band reset 38
2.2.4.3. Flashing tool . 39
2.2.4.4. Modifications . 39

2.2.5. Rocket SoC Runtime Library . 40
2.2.5.1. Program termination . 40
2.2.5.2. Library Components . 40
2.2.5.3. Template Applications . 40

3

2.3. Modifications . 41
2.3.0.1. Makefile adjustments . 41

3. Compiler System 41
3.1. Original Code Base . 42
3.2. Modified Code . 42

3.2.1. High-level Code Compilation . 42
3.2.1.1. General Modifications . 43
3.2.1.2. Parsing and Analysis of the Approx Decorator 43
3.2.1.3. Parsing and Analysis of Pragmas 45
3.2.1.4. Parsing of Approximate Arithmetic and Approximated

Functions . 46
3.2.1.5. Analysis of Approximate Computations 47
3.2.1.6. Code Generation . 48
3.2.1.7. Test Code . 48

3.2.2. LLVM Translation . 48
3.2.2.1. Adding Intrinsics, Translating to Instructions 48
3.2.2.2. Selection DAG, Passes and UUID-Translation 50

3.2.3. Machine Code Generation . 51
3.2.3.1. Modifying the Assembler 51

3.2.4. Lookup Table Compilation . 52
3.2.4.1. Usage . 52
3.2.4.2. File Formats . 52
3.2.4.3. Command-line Options 53
3.2.4.4. Segmentation Strategies (Primary) 53
3.2.4.5. Segmentation Strategies (Secondary) 54
3.2.4.6. Approximation Strategies 55
3.2.4.7. Implementation Overview 55

3.2.5. Error Handling and Testing . 58
3.2.5.1. Exception classes . 58
3.2.5.2. Logging System . 59
3.2.5.3. Unit Tests . 59
3.2.5.4. System Tests . 59

3.3. Limitations and improvement-worthy parts 59
3.3.0.1. Floating-point Support 59
3.3.0.2. Target Function Evaluation 59
3.3.0.3. Default Strategies . 59

4. Approximation Hardware 59
4.1. Environment in Rocket chip . 59

4.1.1. Chisel . 60
4.1.2. Decoder . 60

4.2. LUT . 61
4.2.1. Overview . 61

4

4.2.2. Chisel Interface . 62
4.2.3. Hardware Core . 64

4.2.3.1. Component Overview . 64
4.2.3.2. Architecture Parameters 65
4.2.3.3. LUT controller . 65
4.2.3.4. Input decoder . 66
4.2.3.5. Address translator . 66
4.2.3.6. Lookup Table . 66
4.2.3.7. Interpolator . 66
4.2.3.8. Testing . 66
4.2.3.9. Configuration Bitstream 67

4.2.4. Design Space . 68
4.2.4.1. Parameters, metrics . 69
4.2.4.2. Exploration . 69
4.2.4.3. Conclusion . 69

4.3. Approximate ALU . 69
4.3.1. Overview . 69
4.3.2. Original code base . 70
4.3.3. Modified Code Base . 70

4.4. Power estimation . 73
4.4.1. Xilinx Power Analyzer . 73
4.4.2. Synopsis Tool . 74

Appendices 80

A. External resources 80
A.1. QEMU . 80
A.2. Clang/LLVM . 80
A.3. GNU/Binutils . 80
A.4. Chisel . 80
A.5. Scala . 81
A.6. RISC-V . 81
A.7. Rocket Chip . 81
A.8. Rocket SoC . 81

5

Part I.

User Guide

0.1. Introduction

This is the User Guide for the Paderborn Approximate Computing Core (PACO), in-
tended to enable a reasonably experienced computer user to commission a PACO ap-
proximate computing system and compile/run software on it. If you want to create
your own (hardware) approximation techniques, integrate them into the CPU core and
modify the compiler toolchain to allow creation of software for it, you will additionally
need the PACO Developer’s Guide.

What is the PACO?

The PACO project was conceived by Christian Plessl and Paul Kaufmann at the Univer-
sity of Paderborn and designed and implemented by a team of Master’s students under
their guidance.
Goal was to provide an experimentation platform for approximate computing, allowing
researchers to explore new approximation techniques in the full stack of a modern com-
puting system.
We picked the open Rocket Chip implementation of the RISC-V instruction set as a basis
for our implementation, because it ships with a fairly complete toolchain for modern

• hardware description (https://chisel.eecs.berkeley.edu/),

• synthesis for both FPGA and ASIC,

• several levels of emulation and simulation for testing and debugging.

Into this core we have integrated two approximation techniques, an ALU capable of
approximate calculations and a Lookup table functional unit capable of approximating
part of the domain of a function by sections. To be able to test these approximation
techniques, we have also modified the control plane of the underlying chip and extended
the RISC V ISA with approximate instructions and created compiler support for them.
There are many more approximation techniques either proposed or not thought-of yet.
We want to enable other groups interested in Approximate Computing to test and bench-
mark their techniques in this full-stack environment. So, we have documented each step
needed to implement approximation techniques for their benefit, primarily in the De-
veloper’s Guide. All our own modifications and new developments have been designed
with easy modification in mind.

6

https://chisel.eecs.berkeley.edu/

Precursor Software

We are standing on the shoulders of the Rocket Chip development team, the RISCV
development consortium, the LLVM project and the QEMU project.

0.2. How to read the User Guide

This subsection contains general information allowing you to understand the rest of this
User Guide much more quickly: e.g. environment root directory, shell-commands, paths
to files, and notes on make.
This is followed by an overview of the major components of a PACO approximate com-
puting system, allowing you to understand the language of the remaining User Guide
sections.
Last is an overview of the User Guide.
If you are already familiar with the PACO system and only need the step-by-step instal-
lation guide, skip to Section 0.3.

Environment root directory is the base repository you check out. All other repositories
are located as subdirectories in there. This document will always refer to it as paco-env.

Shell-Commands are always framed in a box and should be executed from the paco-
env directory if not otherwise stated. Every command starts with a ”$” symbol. A
command looks like this

$ echo "execute this"

and should be copied to the terminal.

Paths to files are shortened in this document and they can be looked up in Ap-
pendix 4.4.2, in the PDF version with a click. Whenever a file or directory is men-
tioned it looks like this Top.GnssConfigNoFPU.v, and the full path can be found in Ap-

pendix 4.4.2. TODO (MUST): get Peter to create special files as an appendix

Notes to make include the use of the command line option ”-j” which specifies how
many jobs can be run in parallel. In this document we will always add ”-jN” where N
is the number of jobs you want to run in parallel. This ”N” has to be replaced by you.
A good rule of thumb is to set N to the number of cores your cpu has.

$RISCV variable is used as a base directory for your installed tools, e.g. (RISCV-)gcc,
(RISCV-)clang, etc. This variable is automatically set if you have sourced env.sh. The
default value for this variable is the directory riscv-tools.

7

Program Code is framed in a box, similarly to shell-commands. Unlike shell-commands
the lines do not start with a ”$” symbol. An example in the C programming language:

#include<stdio.h>

int main()

{

printf("Hello PACO");

}

0.2.1. Component Overview

Table 1 (hardware) and Table 2 (software) can give you an overall view of the PACO
components essential to run your first approximate PACO applications on an FPGA.
The hardware components can be seen in Table 1. This table describes the components
that generate and communicate with the hardware, on an FPGA.
The software components are listed in Table 2. This table focuses on the tools a devel-
oper needs to compile, debug, and execute PACO C/C++ programs.

0.2.2. User Guide Overview

The next subsection 0.3 contains detailed instructions on how to set up your PACO
approximate computing system from scratch, including generation of configuration bit-
stream for an FPGA and compilation of PACO approximate applications. The last
subsection (0.4) of the User Guide shows how approximate applications can be emulated
with either QEMU or our cycle-accurate emulator or run on the FPGA.

0.3. Step-by-step guide

The step-by-step guide allows you to set up a PACO approximate computing system.
This will create an environment such that you can instantiate the CPU-core with all
components on the FPGA. You can also compile programs to be run on the FPGA,
and simulate the core with a C emulator generated from the same Chisel hardware
specification used to generate the FPGA configuration bitstream. This guide assumes
that you have a Linux system (tested on Ubuntu 16.04 LTS). If you are using Ubuntu
16.04 LTS please make sure you have the following packages installed by running:

$ sudo apt-get install autoconf automake autotools-dev curl libmpc-dev \

libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf \

libtool patchutils bc uuid-dev liblua5.2-dev

0.3.1. Setting up the environment

There are two alternative methods of environment setup:

• invoke the provided setup script

8

Category Component Description Further documentation

CPU-Core
Rocket-Chip

The Rocket-Chip consists of CPU
+ Caches + Buses that PACO uses
and is written in the Chisel hard-
ware definition language. It is the
host to our approximation hardware
units, i.e. the Lookup table(LUT)
and the Approximate ALU/MUL.

• Chisel: Section 4.1.1

• Extern Chisel: Sec. A.4

• Extern Rocket: Sec. A.7

LUT

The Lookup table (LUT) is a func-
tional unit in the CPU that can
e.g. be configured to evaluate arith-
metic functions in functional ap-
proximation. Functions are linearly
approximated within segments of
the function domain. Configura-
tion data includes incline and off-
set per segment, as well as config-
uration for the segment identifica-
tion logic. The LUT is currently
configured at load time of an ap-
plication, although nothing should
prevent you from configuring during
runtime.

• Section 4.2

Approx. ALU

The Approximate ALU/MUL is
used to explore the effect of ap-
proximation on the output of a
program. The unit cuts a pro-
grammable amount of least signif-
icant bits from approximate ALU
operands, resulting in functional ap-
proximation.

• Section 4.3

non-CPU
Rocket-SoC

The Rocket-SoC is the non-CPU
hardware in which the Rocket-Chip
is embedded. It contains useful
devices, like a UART, boot ROM,
and SRAM program memory. All
the components are connected via
AXI-bus. The UART in particu-
lar is used to communicate between
PACO on the FPGA and the Linux
computer controlling it using the
flash-tool.

• Extern: Appendix A.8

flash-tool

The flash-tool allows bidirectional
communication with and control
of the Rocket-SoC running on the
FPGA. It can reset it, write a
program into it’s SRAM over the
UART, start the program, and com-
municate bidirectionally.

• Section 2.2.4

Table 1: PACO hardware component overview: Short descriptions of major hardware
components in the PACO approximate computing core, as well as the FPGA
interface needed to run applications it. The last column contains references to
more detailed descriptions of the components.

9

Category Component Description Further documentation

Compiler
Clang/LLVM

Clang/LLVM compiles approximate
C/C++ programs into assembly. This is
the compiler you want to use for approxi-
mate components of applications. For the
LUT, it has to be used in combination
with the lut-compiler and the lut-startup
tools. Clang/LLVM cannot produce
assembled files, but this can be done with
GCC or Binutils.

• Clang: Section 3.2.1

• LLVM: Section 3.2.2

• Extern: Appendix A.2

GCC

GCC is the C/C++ compiler which can
compile C, C++, Assembly files into
native PACO executables. It should be
used as a companion for Clang/LLVM or
for parts of your program not using any
approximation component.

• Extern: Appendix A.3

Binutils

Binutils has useful tools for assembling,
linking and analyzing binary programs.
It is the tool GCC eventually calls to
assemble/ link. “objdump” is useful to
analyze a compiled program or debug a
LUT configuration.

• Extern: Appendix A.3

Libraries RocketLib

This library contains useful functions
for communication between a pro-
gram running on the FPGA and your
connected Linux PC. One end of the
communication is your program using
this library, the other end is the flash-tool.

• Section 2.2.5

LUT-config.
lut-startup

The lut-startup tool generates assembly
code used to load configuration data into
the LUT hardware at program startup
time.

TODO (MUST): Add link to startup script documentation

lut-compiler

The lut-compiler receives an arithmetic
function in C/C++ code as well as
approximation parameters and generates
configuration data for the LUT.

• Section 3.2.4

Emulator
Chisel C-Emulator

The C emulator is generated directly from
the Chisel HDL of the CPU and simulates
it cycle accurate. This emulator can be
used to test the approximate ALU.

TODO (MUST): Add link to C-emulator documentation

QEMU

QEMU is a fast but functional emulator
which is not cycle accurate. It can be used
to simulate programs for the approximate
ALU and was used as a quickstart for our
development.

• Section 0.4.2

• Section 2.1.2.7

Table 2: PACO software component overview: Short descriptions of major components
needed to compile/generate software for the PACO approximate computing
core. The last column contains references to more detailed descriptions of those
components.

10

• setup manually

This guide assumes that you have all the folders at the right place as well as the correct
packages, e.g. gcc, liblua, etc. installed. Also make sure you have the file env.sh sourced
in your terminal. After installation all tools should be installed in the path riscv-tools
and should also reside in your system-path so that you can invoke them on your terminal
without giving a path to the program.

TODO (MUST): missing: command line downloading and installing the paco-env
repository

0.3.1.1. Using the Setup Script The script lies in the paco-env repository and can be
invoked by:

$ cd paco-env

$./install.sh

This builds and installs all tools except the CPU-core into the path riscv-tools.

0.3.1.2. Manual Setup The manual setup consists of five steps:

1. Build the RISCV Toolchain

2. Build LLVM and Clang

3. Build the LUT Compiler

4. Install the Python Libs

5. Install the Rocket Lib for C programs

1. Build the RISCV Toolchain To install the RISCV toolchain run:

$ cd paco-env/riscv-tools-src

$./build.sh

This will install the gcc compiler, binutils, and the riscv-tests into the directory riscv-
tools.

2. Build LLVM and Clang Make sure you have the packet libuuid installed and
then run:

$ cd paco-env/riscv-tools-src/riscv-llvm

$ CC=gcc CXX=g++ ../configure --enable-targets=riscv --prefix=$RISCV

$ make -jN && make install

Attention: remember to replace N with the number of threads you want to spawn.
This will install the clang compiler and the llvm tools into the directory riscv-tools.

11

3. Build the LUT Compiler To install the LUT compiler make sure you have a lua
package installed and run:

$ cd paco-env/riscv-tools-src/riscv-lut-compiler

$ make -jN && make install

This will install the LUT compiler into the directory riscv-tools.

4. Install the Python Libs To install the python libs run:

$ cd paco-env/riscv-tools-src/py

$ make install

This will install the python libs into the directory riscv-tools.

5. Install the RocketLib for C Programs To install the RocketLib run:

$ cd paco-env/rocket-soc/rocket_soc/lib

$ make -jN && make install

This will install the RocketLib into the directory riscv-tools.
From this point on your system should be prepared to run all the software tools of this
environment.

0.3.2. Generating the CPU core

The Rocket-SoC (System-on-Chip) encapsulates a variety of hardware modules, among
them is the CPU (Rocket-Chip). The Rocket-Chip is written in the Chisel HDL and
needs to converted into Verilog to be used by Rocket-SoC. This can be done by running:

TODO (MUST): missing: command line downloading and installing the paco-env
repository

$ cd paco-env/rocket-chip/fsim

$ make -jN && make install

0.3.2.1. Note: Since Chisel is embedded into the Scala language, you need to have the
Java Virtual Machine installed for this to work.
Using ’make install’, the Verilog description is directly copied into the correct directory
Top.GnssConfigNoFPU.v and the Rocket-Soc is now ready for synthesis.

0.3.3. Synthesizing the system for FPGA instantiation

For this step you need to have Xilinx ISE 14.7 installed on your system as well as the
Xilinx cable driver. A guide on installing both of them can be found here 1. This step
assumes that ISE is installed in the path /opt/Xilinx/14.7/ISE DS. You start ISE by
first sourcing the file settings64.sh and invoking:

1http://www.george-smart.co.uk/wiki/Xilinx_JTAG_Linux

12

http://www.george-smart.co.uk/wiki/Xilinx_JTAG_Linux
http://www.george-smart.co.uk/wiki/Xilinx_JTAG_Linux

$ source /opt/Xilinx/14.7/ISE_DS/settings64.sh

$ ise&

This will start ISE in a GUI window. From here you have to select ”File - Open
Project” and open the Rocket-SoC project file called rocket soc.xise. If a window pops
up stating the file ”Memo.vhd” cannot be found, you can click the checkbox ”Remove
unspecified files from project” and proceed. Once you open the project click generate
programming file, which starts the synthesis process. Once the process is finished, a
bitstream file is created called rocket soc.bit.

To flash this bitstream onto you FPGA you have to start impact by either clicking on
Configure Target Device in ISE or run:

$ source /opt/Xilinx/14.7/ISE_DS/settings64.sh

$ impact&

In impact first click on No or Cancel on every popup window. Then doubleclick on
Boundary Scan, press Ctrl-I to initalize your cable to the FPGA and click No and Cancel
on the two popups. Rightclick on the chip symbol labeled xc6vlx240t, select Assign new
configuration File..., and select the file rocket soc.bit. Finally rightclick the chip symbol
again and select Program, then Ok and after a loading bar a blue box should appear
saying Program succeeded.

0.3.4. Compiling programs

To compile a program you need to have the environment set up correctly (see Sec-
tion 0.3.1). If you want to start quickly you can use the example templates or else follow
the manual guide which allows you to create an approximate application from scratch.
This guide has optional steps which you can ignore if you do not plan on using the LUT.
These paragraphs are marked with the LUT: prefix.

0.3.4.1. Examples can be found in the directory templates/: lut-application and alu-
gaussian-application. The lut-application demonstrates gamma correction for images
and the lut-gaussian-application implements a 3x3 Gauss filtering algorithm. We have
chosen very different image manipulation algorithms as we think the effects of approxima-
tion can be visualized best with image comparisons. For details on their inner workings

and evaluation results, see the PACO webpage. TODO (MUST): insert precise url

0.3.4.2. Manual steps The manual guide has two mandatory steps:

1. Creating and compiling main.c

2. Linking everything

If you plan to use the LUT, two additional steps are needed:

1. Generate LUT configuration

13

2. Generate lut-startup code.

First we create our working directory which we call $WORK here and should be exported
into a shell-variable:

$ export WORK=/path/to/working/dir/

$ mkdir -p $WORK && cd $WORK

Create and Compile main.c: First create main.c like a normal C program which
should at least contain a main() function. If you want to communicate between your
Linux PC and the FPGA you need to include the header file uart.h from RocketLib.
For more information on how to use the RocketLib, see Section 0.4.3. If you want to
use the approximate ALU, you can use the “approx” decorator to mark variables as
approximable. If you want to approximate a function using the LUT you can mark it
by using the approx decorator on the function. An example looks like this:

/* include the RocketLib header */

#include <rocket/uart.h>

/* this function will be approximated by the LUT */

int approx(strategy=lut) foo(int a)

{

return a*a;

}

int main()

{

/* this variable can be approximated and the PACO compiler will aim for a

precision reduction of 2 (least significant) bits for the last state

of this variable. For details, see Developer’s Guide, compiler section */

int approx(neglect_amount=2 relax=1 inject=1) approx_var, approx_result;

int result, b;

/* this will result in a LUTE instruction */

result = foo(b);

approx_var = 2;

/* this will create an add.approx instruction */

approx_result = approx_var + 5;

/* we call RocketLib to print characters back over the UART */

uart_println("Program ran");

return 0;

}

To compile this into an assembly file main.S :

$ cd $WORK

$ clang -Iinclude -I$RISCV/include -I$RISCV/riscv64-unknown-elf/include \

-std=gnu99 -static -fno-common -emit-llvm -S main.c -o main.ll

This will create a llvm-IR intermediate file called main.ll and if you have used
the LUT, an input file for the LUT-compiler. The file will have a UUID (universal

14

unique identifier) as a name. This looks for example like this: aab80a96-8016-11e6-
a47e-00226817fba6.input.

Finally we need to create an assembly file from the llvm-IR using llc:
TODO (MUST): does this aab80a96-8016-11e6-a47e-00226817fba6.input same as
lut0.input if yes then provide consistency on names, if clang generates this file then
specify the same in above text, this is a bit unclear from above paragraph

$ llc -march riscv -mcpu=Rocket main.ll -o main.s

LUT: Generate a LUT configuration These steps generate a configuration for the
LUT using the LUT-compiler. First you need to create the file default.arch which de-
scribes to the LUT-compiler how the LUT hardware was configured during synthesis.
This file should look like this:

delay_addressTranslator = 0

base_bits = 48

delay_controller = 0

incline_bits = 32

delay_inputDecoder = 0

inputWords = 3

interpolationBits = 12

delay_interpolator = 0

plaInterconnects = 204

segmentBits = 7

selectorBits = 9

Second, you need an input file here called lut0.input, which should have been created by
the clang-compiler in the previous step. If you want to tweak this file yourself or you do
not want to rely on clang the file looks like this:

name = "lut0"

numPrimarySegments=6

bounds = "(0,16777215)"

segments = "uniform"

approximation = "linear"

%%

foo int -> int

%%

int foo(int a) {

return a*a;

}

If you want further information on how the input and arch files are specified, look at
Section 3.2.4.

To create a compilable array containing the data for the LUT:

15

$ cd $WORK

$ riscv-lut-compiler --arch default.arch -C lut0.input

This will result give in the file lut0.c.

LUT:Generate Startup Code The startup code is needed to load the configuration
data created in the previous step into the LUT hardware. This code can be generated
automatically by running:

$ cd $WORK

$ riscv-lut-startup -a default.arch lut0 -o lut-startup.s

Linking everything together: This step produces the executable which can be run
on the FPGA. This step needs an assembled file main.S and, if you are using the LUT,
a LUT data file lut0.c as well as the LUT startup code file lut-startup.s, generated in
the previous step is needed. Additionally you need a linker script, called main.ld here:

OUTPUT_ARCH("riscv")

SECTIONS

{

/* text: test code section */

. = 0x10000000 ;

.text :

{

*(.text)

}

/* data segment */

.data : { *(.data) }

.sdata : {

_gp = . + 0x800;

*(.srodata.cst16) *(.srodata.cst8) *(.srodata.cst4) *(.srodata.cst2) *(.srodata*)

(.sdata .sdata. .gnu.linkonce.s.*)

}

/* bss segment */

.sbss : {

(.sbss .sbss. .gnu.linkonce.sb.*)

*(.scommon)

}

.bss : { *(.bss) }

/* thread-local data segment */

.tdata :

{

_tls_data = .;

*(.tdata)

}

.tbss :

{

*(.tbss)

}

/* End of uninitalized data segement */

_end = .;

16

}

To generate an executable we will use gcc as a linker. That means we can provide our
LUT configuration as a C-file. Run:

$ riscv64-unknown-elf-gcc lut-startup.s main.S lut0.c -o main.elf -L$RISCV/lib \

-lrocket -nostdlib -nostartfiles -Tmain.ld

This creates an ELF-executable file main.elf which can be executed on the FPGA. A
how-to for that can be found in Section 0.4.3

0.4. Run PACO Approximate Applications

0.4.1. Simulate using the C Emulator

The C Emulator allows you to run programs on a virtual version of the Rocket CPU. The
CPU registers are available, as well as any instructions for which hardware description
has been provided for. In contrast to the Quick EMUlator (QEMU) described in the next
subsubsection, the C Emulator is generated from the actual Chisel code describing the
Rocket CPU core and is cycle-accurate. This means it allows you to test your hardware
for logical correctness without synthesizing it and benchmark your applications much
more precisely in a virtual environment than with QEMU.

Getting it to run: The C Emulator must first be generated from the Chisel code. For
that, move to the emulator/ directory and call:

$ make CONFIG=PACOConfigCPP -jN

If this works, you can now test the emulator by calling:

$ make CONFIG=PACOCOnfigCPP -jN run-asm-tests

Make will link assembly tests assembled to .hex into the output/ directory from isa/
and run them, generating *.out files in the output/ folder. Prerequisite is of course
that the test assembly files have been generated correctly (see Section 0.3.1). The
sources for the test assembly files are in the directory tree under isa/. The base
riscv-tests directory is very crowded, but contains both a Makefile and README.md .
Assembly of the tests is described in the RISC-V tests section (2.2.1).
Additional sources of information:

• If running the emulator fails, also look into Section 2.2.1 and Section 2.2.2.

• Use of the C Emulator is further described in a README.md in the rocket-chip/
directory, but not its role and interdependencies.

0.4.2. Simulate using QEMU

QEMU2 allows you to test your approximate programs for logical correctness without
having to specify hardware. Drawback: The QEMU emulator cannot be generated

2http://qemu.org/

17

http://qemu.org/

from your hardware specification, giving you no guarantees for parity of the emulator
and hardware specification.
QEMU is mentioned here because it also allows you to test newly generated
approximate applications, primarily for experienced users of QEMU. Explaining
QEMU setup in the User Guide for non-QEMU-experienced users would take too much
space, but that can be found in the Developer’s Guide, Section 2.2.3.
The following QEMU guide assumes that you have set up your QEMU system and
have included the Berkeley boot loader, linux kernel, and initrd with your program.
The path to these files will here be referred to as: $bbl for the berkeley boot loader,
$linux for the linux kernel and $initrd for the initrd.
To simulate your program first start qemu and boot up linux by executing:

$ qemu-system-riscv -kernel $bbl -append $linux -drive file=$initrd,format=raw -

nographic.

Afterwards you are greeted by a login screen where you login using the username ’root’
without password. In your new command prompt you can start the program which you
have put into the initrd.
If you want to follow the control flow of QEMU you can enable logging by using the
parameter -d for the qemu command line. Afterwards you can specify
comma-separated additional arguments as listed below:

• in asm shows the target assembly code for each compiled basic block

• exec shows the execution trace before each executed basic block. (This should be
combined with nochain)

Example:

$ qemu-system-riscv -d in_asm, nochain, exec -kernel ...

If you want to print this information to file, use the parameter -D plus path to the file.
If you want to debug your program in qemu using gdb3 you need to start qemu using
the additional command line arguments -S -s. This sets up a gdb server which halts
the guest program at its start point and waits until a gdb connects. To connect with
gdb, start up gdb with your program from initrd as a parameter (e.g.
riscv64-unknown-elf-gdb yourprogram.elf) and then type: target remote localhost:1234.
From there you can use gdb the same way as a native debugger.

0.4.3. Running Programs on an FPGA Instantiation

There are three prerequisites to running an executable on the FPGA:

• have the environment installed (see Section 0.3.1),

• have a CPU instantiated on the FPGA (see Section 0.3.3),

3 https://github.com/mythdraenor/riscv-gdb

18

https://github.com/mythdraenor/riscv-gdb

• and have a compiled program (see Section 0.3.4).

This section answers two problems:

• How can you load and run an approximate application on the FPGA?

• How can you communicate with the approximate application?

1. How to load and run a program? Loading and running is done using the
riscv-uart-flash tool over UART communication. For this section we assume your
program is called prog.elf. It can be loaded onto the FPGA by running:

$ riscv-uart-flash -i prog.elf -w

This command will also start the execution of the program and anything written back
via the UART will appear on the console which starts the tool. The command line
option ”-w” will tell the riscv-uart-flash tool to run until it receives a terminate signal
from your program running on the FPGA. The next section will show how to
terminate your program. Further information to riscv-uart-flash tool can be found in
Section 2.2.4.

2. How to communicate with the program? The most common use case is to
write data or status information back from the program running on the FPGA. This
can be done by using the appropriate function from the RocketLib (see lib). To write
back a string you can simply use the following code snippet:

#include<rocket/uart.h>

...

void foo()

{

uart_println("bar");

}

If you want to write back a uint64 t you can use this code snippet:

#include<rocket/uart.h>

#include<rocket/strutil.h>

...

void foo(uint64_t a)

{

char buf[64];

int r = 0;

r = wrstring(buf + r, "bar");

r = wruint64(buf + r, a);

uart_println(buf);

}

The code snippet uses a array “buf” with a 64-byte length to store the string to be
printed. The variable “r” is used to identify the current index of the array. The
function “wruint64” takes an array position and an integer, converts the latter into a
string and writes into the array it at the given array position. It then returns the new

19

array position at the end of the written integer. The function “wrstring” works
similarly for strings.

20

C Emulator

RISCV QEMU
with PACO
approx. instrs.

ML 605 FPGA

Binary

run

LLVM+binutils
ext. with approx.

instructions

LLVM
IR

Clang
extended with

PACO decorators

Approximable
Program

C/C++ with approximate decorators

Annotated
Approximate Program

Hardware
description of
Rocket SoC

(Chisel, VHDL)

Hardware
description of

Rocket CPU core,
PACO approximate

functional units
FPGA
configuration
bitstream

generate

configure

Hardware Software

Figure 1: An overview over the workflow in the PACO tools. On the left side are the
Hardware descriptions and how they can be tranformed into three different
platform. The right side shows the workflow to create a program to be run on
these platforms

Part II.

Developer’s Guide

1. Overview

The Developer’s Guide for the PACO project is intended for programmers and
hardware developers trying to introduce new instructions and hardware to the PACO
core and improving the C++ compiler with approximate extensions. It is as a
description of the implementation of the PACO core and the approximation systems as
they are described in the design document. For an introduction into the PACO system
and tools as well as step-by-step instructions for installation and preparation of the
environment refer to the User Guide.
The Developer’s Guide also contains a complete description of all the components of
our project. This includes a rundown of the creation of the environment directory
structure, an introduction to each major part as well as both a coarse-grained and a
fine-grained description of modifications done to the original code. The original code
being the code base serving as a starting point for our project: The RISC-V toolchain,
Clang+LLVM, the Rocket Core and SoC as well as QEMU. Our project is divided into
four principal components: The environment, the compiler system, the approximate

21

https://riscv.org/
https://clang.llvm.org/
https://llvm.org/
http://bar.eecs.berkeley.edu/projects/2014-rocket_chip.html
http://qemu.org/

ALU and the Lookup table. Each component ties into an aspect of modifying the
Rocket SoC which is the base system for our approximate processor solution.
The Rocket SoC (see Appendix) itself is a system surrounding the Rocket Core, which
is the actual base processor core.
Our project builds on these parts by adding two approximate computing units (Lookup
table and approximate ALU) directly into the Rocket Core description, extending its
the instruction set.
To exploit the respective instruction set extensions, we extend the binutils of the GNU
Compiler Collection to translate the corresponding assembly instructions into machine
code understood by our modified processor.
Additionally we modify the Low-level Virtual Machine (LLVM) compiler and the
Clang C/C++/Objective C front-end to translate an extended version of C/C++ into
assembly code targeted for our approximate extensions.
For a detailed description of the instruction set extension, as-
sembly code additions and modifications to C/C++, please refer to the design document

CITATION NEEDED .
The environment is the directory structure containing all the other components as well
as tools required to interoperate them.

TODO (MUST): explain structure of this document (AFTER it was finished, duh)

TODO (MUST): remove the intermediate status of implementation and structure
the contents

This document is structured as follows:
The rest of this overview section provides an overview of the state of the
implementation as of 2016-05-29. We are currently implementing in three of the four
larger divisions of implementation work:

• Environment

• Compiler

• Hardware (ALU)

For each of those divisions, we provide minimal descriptions of the smaller work
packages identified during the design phase, as well as an estimation of its readiness.
Independently of these divisions we provide a report of difficulties surmounted and our
situation regarding the schedule.
The next three sections detail the changes we have made to the existing code base in
each of the previously mentioned larger divisions of implementation and provide
context to illustrate what has been done and what still needs to be done. Where
deviations from the Design Document were advisable, we have described those
deviations as well as the reasons. For full accountability, each description of a tool also
contains information on how to use that tool to replicate our work.
The last section,“External Resources” lists the most useful links we found during our
work on the PACO project.

22

1.1. Current state of implementation

TODO (MUST): migrate this section into future work

TODO (MUST): Update this section for the end of the official implementation phase.

TODO (MUST): figure: toolflows visualized

The implementation effort is split into four components: Environment, Compiler,
Hardware (ALU) and Hardware (LUT).
The environment implementation handles setting up the directory structure and source
control, preparing tool flows and ensuring the correct behavior of all components.
The compiler part contains the modification of existing toolflows to allow the
compilation of our language extensions to generate executable binaries.
This process itself is split into low-level and high-level compilation.
Hardware implementation handles the specification of CPU core and peripherals
relating to the ALU and LUT approximation techniques.
In the following each part
is subdivided into tasks, listed together with a short description and status of completion.
CLARIFY: is this going to stay in the final version?

1.1.0.1. Environment Completion of environment implementation is required as soon
as possible as all other parts depend on it.
component status comments

Preparation Completed Forking of all external resources and setting up-
directory structure

System adminis-
tration

Completed Acquisition of local and remote hardware, set-
ting up toolflows

Source to FPGA
flow

Completed Ability to compile source code and execute it on
the RISC-V core instantiated on an FPGA

RISC-V test cases In progress Compilation of RISC-V test cases and execution
within the C simulator and FPGA instantiation

Implementation
document (inter-
mediate)

In progress Mid-term implementation documentation as
status report / reference manual

Implementation
document (final)

Pending Revision of the implementation document for fi-
nal delivery

Demonstration
application

Pending Single application demonstrating the features of
our system

Finalization /
loose ends

Pending Assembling the entire code base, documents and
knowledge base into a single deliverable, compo-
sition of the project web site

23

1.1.0.2. Compiler The compiler is regarded as a should -level priority to be
implemented during the entire implementation phase by a small sub team. Both the
low-level and high-level compiler parts are not strictly necessary to utilize the
approximation techniques implemented in the CPU core however they offer a
simplification of using them.
component status comments

Approx decorator
(parsing)

Completed Parsing of approx decorator syntax and evalu-
ating the key-value data

Approximate
types (semantics)

In progress Exploitation of type approximation in expres-
sion trees.

Approximate
instructions (code
generation)

Pending Output of approximate instructions / intrinsics
where approximate expressions were translated

Pragma integra-
tion

In progress Integration of pragma directives for manipulat-
ing the translation process.

Approximate
functions (seman-
tics)

Pending Analysis of approximation parameters on func-
tions and invocations and assignment of LUT
identifiers.

LUT extraction
(code generation)

Pending Extraction of source code and key-values for the
LUT compiler to use.

1.1.0.3. Hardware: ALU The ALU is the first approximation technique to be
implemented. This is done before work on the LUT is begun and thus is connected
with overhead for getting used to the base system to be extended.
component status comments

Instruction de-
coding

Completed Addition of control signals and assignment
based on opcodes

Approximate ad-
dition

Testing Execution of approximate addition

Approximate
multiplication

In progress Execution of approximate multiplication

Approximate
floating-point
operations

In progress Execution of approximate operations in the
floating-point unit

Power consump-
tion estimation

In progress Measuring and/or estimation of power consump-
tion compared to an unaltered system

1.1.0.4. Hardware: LUT The LUT is implemented as the final component to the
system and consists of both the hardware core itself and a compilation tool used to
create LUT configurations out of source code.

24

component status comments

LUT core Pending The hardware core executing LUT computations
LUT integration Pending Insertion of the hardware core into the CPU

template: Instructions and memory-mapped
configuration.

LUT compilation:
frontend

Pending Processing of LUT compilation input and invo-
cation of compilation backends

LUT compilation:
backend

Pending Numeric generation of LUT segments

LUT compilation:
code generation

Pending generating of assembly code from LUT segments

1.1.0.5. Problems During the implementation phase, a number of unforeseen
problems occurred that required more time than favorable:

• Program execution on FPGA implementations: Out of the box there was no way
to quickly load and execute programs on an FPGA implementation, instead the
entire bitstream had to be re-synthesized each time a new program had to be
executed.
This problem was solved by writing a custom bootloader and flashing tool which
itself presented as a challenge due to erroneous implementation of the UART
peripheral in the code base.

• Test cases / C simulator state: The RISC-V test cases fail with the C simulator
due to conflicts in the version history. This problem is currently being addressed.

Due to a lack of experience in the respective parts, we expect to encounter more
difficulties in the remainder of the implementation phase:

• LUT description and implementation: The execution of the Lookup table is
designed to work within the processor pipeline. As the LUT hardware performs
moderately complex computations, the data path delay may be too long to do so.

• Chisel abstraction: As chisel is a high-level hardware description language, its
abstraction level may be too high for describing our hardware cores effectively.

• Clang compiler complexity: As it is a significant software project, modifying the
clang compiler is ambitious at best. The semantic analysis, translation and code
generation components are still to be implemented.

TODO (MUST): does the developer guide need to be provided with the details of
timeframe and work assignemnt ? or better to have another section called as workflow
management

25

1.1.0.6. Timeframe The implementation phase is set in the time interval from
2016-03-28 to 2016-07-25. During this time the implementation work is addressed in
four tracks: Environment, compiler, ALU and LUT. The Environment was handled in
the beginning as it amounts the foundation of all the other tracks. Compiler
modifications are handled as a long-running track throughout the entire
implementation phase and the ALU / LUT implementation are performed sequentially,
initially focusing all efforts on the ALU.
Preparation of the environment was unexpectedly time-consuming as communication
between our primary target, an FPGA-implemented Rocket SoC, and a host computer
was particularly difficult. Currently all issues pertaining the communication with the
FPGA have been solved.
Further tasks of the environment track solely consist in wrapping up the directory
structure together with our documentation and resources as a clean deliverable in the
end.
The implementation of the ALU has reached a point where the basic operations
(addition, subtraction) are implemented and functioning, however estimated power
gain is minimal. Therefore the ALU effort was reduced to implementing addition,
subtraction and multiplication, postponing the approximation of floating-point
operations.
The ALU implementation is set to be finished by 2016-06-13, directing the primary
attention to LUT implementation thereafter.

TODO (MUST): the task descriptions can go to previous tables describing work
packages for lut, repeatition of lut tasks

The LUT implementation track is starting at 2016-06-13 and is split into the following
tasks:

• Implementation and testing of the LUT hardware core.

• Simulation of the LUT hardware core in QEMU.

• Integration of the hardware core in the RISC-V pipeline, memory-mapping the
configuration data.

• Fine-grained design and implementation of the Lookup table compilation tool

The compiler track has finished the implementation of assembly code generation for a
subset of instructions with the remainder of instructions being trivial to implement.
High-level translation, divided into the LLVM backend and the Clang frontend is still
ongoing and successful implementation by the end of the implementation phase at
2016-07-25 is uncertain.
CLARIFY: should the workflow management really be there in developer guide this
belongs more to project management stuff

Out of eight members, we initially assign two people to the Lookup table compilation
tool, one person to the QEMU implementation and three members to the LUT
hardware core (implementation, testing). The remaining two continue working on the
compiler track.

26

As the QEMU simulation and the LUT compiler are expected to be completed within
two weeks of work, the assigned people afterwards will be distributed among the LUT
and compiler implementation tracks.
In total, six weeks of time are left for implementing the remainder of our modifications
to Clang/LLVM, the LUT compiler, the LUT hardware core and its integration into
the rocket core.

2. Environment

The environment is a tree of git repositories and automatically generated directories
combined from different projects in which the developers are working in and the
entirety of files reside.
A directory tree of the most important files and directories can be seen in figure 2 with
a short description on their purpose. It starts from the directory paco-env and marks
folders being the root of a git repository with a logo of a folder plus the git logo, e.g.
riscv-tools-src. Directories with a folder symbol without git logo are tracked by the
first parent being a git repository, e.g. the directory py is tracked by the git respository
riscv-tools-src. Directories containg a folder symbol and a gear-wheel are build or
installation directories and thus are not tracked by any git repository, e.g. riscv-tools.

2.1. Generating the environment

This section describes how the environment can be recreated from scratch. If you want
information on setting it up for usage please look at the step by step guide in
section 0.3.

2.1.1. Original code base

This section covers the steps taken to generate our code repositories out of the original
code base.
The initial base for our project consists of a number of different projects: QEMU,
Clang, LLVM, Rocket Chip, Rocket SoC. The Clang/LLVM projects were taken from a
fork done for the RISC-V architecture itself.
The initial structure of our code base can be re-created by checking out the respective
repositories found in table 3. Care must be taken to check out the repositories into the
correct directory structure as depicted in figure 2.

2.1.2. Modified code

TODO (MUST): structure this section some parts are described in tools sections

CLARIFY: does some of the below context comes in user guide
This section describes what steps are required to prepare the environment after it was
checked out from our code base.

27

paco-env

qemu

riscv-tools

riscv-tools-src

py

riscv-fesvr

riscv-gnu-toolchain

riscv-isa-sim

riscv-llvm

riscv-clang

riscv-lut-compiler

riscv-opcodes

riscv-pk

riscv-tests

env

rocket-chip

chisel

context-dependent-environment

dramsim2

emulator

fsim

groundtest

hardfloat

junctions

rocket

torture

uncore

vsim

zscale

rocket-soc

install.sh

env.sh

rocket_soc

lib

rocket-lut

git repository

folder

This direcory contains the VHDL description of the LUT
functional unit as well as software to test this

Contains the RocketLib to communicate from your
program running on the FPGA to the machine attached

Contains the ecosystem around the CPU, e.g. axi-bus,
sram, etc, the bootloader and the ISE project.

Contains only a license file and a readme, which have to
be retained.

Contains the Zscale cpu implementing the RV32IMA ISA
and is not used by this project.

Directory for generating a verilog description of the
rocket-chip which can be used for ASIC.

This is the repository for uncore components associated
with the Rocket chip project.

This is the RISCV random test generator framework used
to verify the Rocket chip.

Contains the Rocket CPU and caches.

A repository for peripheral components and IO devices
associated with the RocketChip project.

A repository containing hardware floating-point units
written in Chisel.

A memory tester circuit for Rocket Chip's memory
system.

Directory for generating a verilog description of the
Rocket chip, which can be used for FPGAs.

Directory for generating a cycle accurate C emulator
which can be used for simulation.

DRAMSim is a cycle accurate model of a DRAM memory
controller

A Scala library which is used for
parameterization of the Rocket chip

Chisel is a new open-source hardware construction
language developed at UC Berkley used for Rocket chip.

Repository containing all the components of the CPU.
Also contains the configurations to generate variants.

Repository containing the framework for writing tests,
that test the functionallity of the Rocket chip.

Repository containing hand written assembly tests for
testing the Rocket chip's functionallity.

This repository contains the RISC-V Proxy Kernel used on tethered systems
to run binaries. It also contains the Berkeley Bootloader to boot Linux.

This repository contains a textutal representation of all CPU instructions,
which is used to generate a decoder for binutils and the Rocket chip.

Repository for the LUT-compiler that creates a LUT
configuration ready to be linked to an executable.

Repository containing the PACO extended C/C++
compiler of the LLVM compiler framework.

Repository containing the PACO extended LLVM backend
used for optimizing and emitting assembly code.

Repository containing the golden RISCV simulator.
Note: PACO did not extend this simulator.

Repository containing the PACO extended
binutils and the GCC compiler.

Repository containing the frontend-server used for
communication. Note: This is not used by PACO

Directory containing the python libraries used by the
flash-tool to communicate with the FPGA.

Repository containing all the software tools
needed to create and run executables.

This is the installation directory for all software tools
used. Also the RISCV shell variable points here.

Repository containing the QEMU emulator with PACO
extension. Note: QEMU is not usable for PACO anymore.

Shell script that automates the
installation process of the software tools

Shell script that should be sourced
before working with any tool of PACO.

build or install. directory modified by PACO from original env.

entirely created by PACO

Figure 2: A directory tree of the most important files and directories with a short de-
scription on their purpose. Git repositories are marked with a git symbol,
folders with a folder symbol, and build or installation folders have a gear sym-
bol. Every directory surrounded by a solid white box is entirely written for
PACO, every directory surrounded by a grey box contains modified code from
the original repositories, and every other directory is untouched.

28

directory repository name original remote commit hash

rocket-soc rocket-soc https://github.com/sergeykhbr/riscv vhdl.git 547e74f

riscv-tools-src riscv-tools https://github.com/riscv/riscv-tools.git 419f1b5

riscv-tools-src/riscv-fesvr riscv-tools-fesvr https://github.com/riscv/riscv-fesvr.git 0f34d7a

riscv-tools-src/riscv-pk riscv-tools-pk https://github.com/riscv/riscv-pk.git 85ae17a

riscv-tools-src/riscv-tests riscv-tools-tests https://github.com/riscv/riscv-tests.git c9022d2

riscv-tools-src/riscv-tests/env riscv-tools-tests-env https://github.com/riscv/riscv-test-env.git 566e47e

riscv-tools-src/riscv-opcodes riscv-tools-opcodes https://github.com/riscv/riscv-opcodes.git b29f84f

riscv-tools-src/riscv-isa-sim riscv-tools-isa-sim https://github.com/riscv/riscv-isa-sim.git 3bfc00e

riscv-tools-src/riscv-llvm riscv-tools-llvm https://github.com/riscv/riscv-llvm.git f11191e

riscv-tools-src/riscv-
llvm/tools/clang

riscv-tools-llvm-
clang

https://github.com/riscv/riscv-clang.git 5ca597d

riscv-tools-src/riscv-gnu-
toolchain

riscv-tools-gnu-
toolchain

https://github.com/riscv/riscv-gnu-toolchain.git 728afcd

qemu qemu https://github.com/riscv/riscv-qemu 8dac7fc

rocket-chip rocket https://github.com/ucb-bar/rocket-chip.git 90a73c6

rocket-chip/groundtest rocket-groundtest https://github.com/ucb-bar/groundtest.git f411a73

rocket-chip/uncore rocket-uncore https://github.com/ucb-bar/uncore.git 7ff3c3e

rocket-chip/torture rocket-torture https://github.com/ucb-bar/riscv-torture.git b54b3d0

rocket-chip/dramsim2 rocket-dramsim2 https://github.com/dramninjasUMD/DRAMSim2.git 0b3ee67

rocket-chip/zscale rocket-zscale https://github.com/ucb-bar/zscale de370f6

rocket-chip/context-
dependent-environments

rocket-context-
dependent-
environments

https://github.com/ucb-bar/context-dependent-
environments.git

8671317

rocket-chip/chisel rocket-chisel https://github.com/ucb-bar/chisel.git 1631c45

rocket-chip/hardfloat rocket-hardfloat https://github.com/ucb-bar/berkeley-hardfloat.git 978b226

rocket-chip/junctions rocket-junctions https://github.com/ucb-bar/junctions 5138397

rocket-chip/rocket rocket-rocket https://github.com/ucb-bar/rocket.git 6c0e1ca

Table 3: Table containing the original repositories without any modfication and the place
where they should be checked out.

29

For a first installation please refer to the user guide’s step by step section 0.3. This
section will give shortcuts for rebuilding the tools after you made changes.
In the following, unless otherwise specified, all instructions require setting up the
PACO environment by sourcing the env.sh script. Furthermore all paths described are
relative to the PACO environment directory.
If you need to enter this path or a subpath specifically, it is denoted as paco-env/.

2.1.2.1. RISC-V toolchains The principal toolchains for the RISC-V are located in
the repository riscv-tools and are built by invoking the script build.sh. This causes all
tool to be compiled. If you only did a change to a single component you can use the
following shortcut. Lets say the tool we changed is binutils. Then we can do the
following:

$ cd paco-env/riscv-tools-src/riscv-gnu-toolchain/build/build-binutils-newlib/

$ make && make install

This will incrementaly build only the binutils and install them into the regular place.

2.1.2.2. Rocket core The rocket core is a single Verilog code file translated from
Chisel specification in the repository rocket-rocket. To build it, use the makefile
Makefile:

cd rocket-chip/fsim

make CONFIG=PACOConfigFPU

Afterwards, the Rocket core file Top.PACOConfigFPU.v must be copied into the
Rocket SoC, replacing the file Top.GnssConfigNoFPU.v.
If you created your own config you have to change the CONFIG variable to that config
name. For example, if you called your config class PACOConfigNoFPU you have to
invoke it by running:

$ cd rocket-chip/fsim

$ make CONFIG=PACOConfigNoFPU

The resulting file will be called Top.PACOConfigNoFPU.v accordingly.

2.1.2.3. Rocket SoC Whenever the Rocket SoC peripherals or the Rocket core itself
were changed, the Rocket SoC must be re-built. See section 0.3.3 of the user guide for
details.

2.1.2.4. Rocket SoC bootloader The bootloader starts up the Rocket SoC and waits
for the uart-flash-tool for commands. If you need to change the bootloader you can do
so in folder src/. It contains two important files: main.c, and trap.c. The former
contains the function init() which is the first function called in the bootloader and the
latter contains the function handle trap() which is called to handle traps.
To recompile the bootloader run the following:

$ cd paco-env/rocket-soc/rocket_soc/fw/boot/makefiles

$ make

30

Afterwards the bootloader image can be found here bootimage.hex. To use it you have
to copy it into the folder fw images/, replacing the old bootimage.hex. The final step is
to resynthesize the Rocket SoC (see section 0.3.3).

2.1.2.5. RISC-V python library The RISC-V python library will be installed under
py, which will be found by the python interpreters through the PYTHONPATH variable.
The PYTHONPATH variable is set by env.sh.

2.1.2.6. RISC-V tests If you changed or added tests to the riscv-tools-tests
repository you can use the same shortcut as for the RISC-V toolchain from Section
2.1.2.1, to incrementally build them by running:

$ cd paco-env/riscv-tools-src/riscv-tests/build

$ make && make install

2.1.2.7. QEMU If desired, the RISC-V fork of QEMU can be built as follows. Note
that explicitly stating the path to a python 2 interpreter is optional on most systems
and added here as a precaution in case the default python interpreter points to python
3.

mkdir qemu-build

cd qemu-build

../qemu/configure --target-list=riscv-softmmu --enable-debug

--python=/usr/bin/python2

make

2.1.2.8. Virtual Machine
TODO (MUST): download external resources and refer to them here

To build virtual machine images to be run via QEMU, a number of components are
required. Building these is explained in this paragraph.
First we need to build the Linux kernel. If this is not desired, a pre-built version can be
found in vmlinux. To build it yourself, create and enter a new directory and execute:

curl -L https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.1.17.tar.xz |

tar -xJ

cd linux-4.1.17

git init

git remote add -t master origin https://github.com/riscv/riscv-linux.git

git fetch

git checkout -f -t origin/master

This will prepare the linux kernel for compilation. Now configure and build it with:
make ARCH=riscv defconfig make -jN ARCH=riscv vmlinux

The resulting file vmlinux can now be used instead of the pre-built file in vmlinux.
The next component required is the initial ram disk (initrd). Again, a pre-built version
is available in rootfs.ext2. To build it manually check out the necessary tools into a
directory of your choosing:

31

git clone https://github.com/a0u/buildroot.git

cd buildroot

Now generate a configuration and build it:
make riscv64 defconfig

make -jN

After completion the resulting file output/images/rootfs.ext2 is the initrd you can
use instead of the pre-built version in rootfs.ext2.

Problem: Creating the configuration fails
Solution: Manually create the configuration by invoking:

cd buildroot

make menuconfig

This will open a menu in which the following settings should be applied:

• Under Target options/Target Architecture, select RISCV64.

• Under Toolchain, set:

– Toolchain type to external,

– Toolchain to custom,

– Toolchain path to paco-env/riscv-tools,

– Toolchain prefix to $(ARCH)-unknown-linux-gnu,

– External toolchain gcc version to 5.x,

– External toolchain C library to glibc/eglibc

– External toolchain kernel headers series to 3.14.x

Finally, to run the system, a Berkeley bootloader is required. To forego this step, a
pre-built version can be found in bbl. To generate it manually, create and enter any
directory and run:

CLARIFY: the prefix was set to RISCV/riscv-64-unknown-elf, but there is

a riscv-64-unknown-elf directory under paco-env/riscv-tools. figure out

which one is correct.
paco-env/riscv-tools-src/riscv-pk/configure

--prefix=$RISCV/riscv-tools/riscv-64-unknown-elf --host=riscv64-unknown-elf

make

The resulting file bbl should serve as a viable replacement for bbl

2.2. Tools

TODO (MUST): divide the section into original code base and modified code base
similar to environment section for sake of consistency

This section presents the set of tools we used for developing and testing modifications
and applications for the RISC-V Rocket core.

32

TODO (MUST): figure: graph showcasing the tool flow for the hardware genera-
tion and verification process including risc-v tests executed on the simulator and fpga
generated by a common chisel source

2.2.1. RISC-V tests

The RISC-V tests are a set of assembly programs you can use to test the correctness of
a RISC-V implementation. You can also use them as benchmarks to test the
performance the performance of a RISC-V implementation.
They are situated as a sub-repository to the riscv-tools, in directory riscv-tools-tests.
For instructions on compiling the test suite refer to section 2.1.2, in particular
paragraph 2.1.2.6
Changes:

• PACO added test programs for the approximate ALU instructions introduced for
the PACO core. They are located alongside the precise tests in their source
directories and named <operation> approx.S.

• From the initial git repository the RISC-V tests did not run in the emulator.
There were two problems from the test side:

– The tests were not compiled from the emulator Makefile as the rocket-chip
README.md promised. Thus, the tests were run with outdated versions of
the machine code and failed with the message
Assertion failed: DCache exception occurred - cache response not killed.
That message could only be read if the Makefile was modified so it would
not delete the file the error messages were redirected to after any failed test.
This problem could be remedied by compiling the RISC-V tests via the
Makefile in riscv-tools-src/riscv-tests.

– The version of the tests that was installed with the RISC-V tools was not
made for the version of the rocket chip that was installed. This meant
incompatible machine code and thus failure of almost all tests. This has
been mostly resolved by reverting riscv-tools-tests to commit
fc000796c11f84a5e1997c67fcfac751aa64a916 and reverting commit
fe978bbd63d8044eda9ad029dedfddfef1137a7e. The fcvt and fdiv
instruction tests still do not succeed, for unknown reasons. They are not
essential to our testing though.

Usage with the C emulator is described in the C emulator section (2.2.2), the tests are
not very useful on the FPGA currently, because they individually need to be modified
to return exit state via UART.

2.2.1.1. Testing approximate instructions/hardware Test assembly programs have
been created to test the approximate ALU instruction. We will use the test of the
approximate add instruction as an example: It can be found as add approx.S. The

33

header file test macros appr scalar.h contains macros helping to create tests comparing
a calculated result to a pre-calculated range of approximately correct values. The
add approx.S program also contains detailed instruction on how to create test
programs for other approximate instructions.
To have this test program compiled with the rest of the test suite, add a line to
Makefrag (obvious how to do it.)

2.2.2. Rocket Chip C Emulator

The role and possible uses of the C Emulator are described in the User Guide
(section 0.4.1). Some additional details may be of use for hardware development:

• The C Emulator is more useful for hardware description testing than for software
testing. If it compiles tests and benchmarks correctly, that is a good sign that the
logic you have described works as intended. It does not mean that the timings all
work out. Almost all detail at the electrical level is abstracted away from.
Up to a magnitude of 100 thousand instructions can be emulated relatively
quickly. To test larger programs, QEMU will probably be a better fit.

• The C Emulator also allows you to quickly prototype new instructions and the
hardware supporting them and test them within a few minutes, which would
otherwise take you a lot longer since you have to synthesize for the FPGA.
QEMU is unsuitable for this since its emulation is not derived from the hardware
description in Scala.

• Finally, the C Emulator allows you to benchmark your hardware precisely,
something that will not be possible with QEMU in the near future.

Running the C Emulator to test your hardware (or assembler) requires a Scala
description of the chip that can be used to generate the C Emulator, the assembly test
programs that should be simulated on the chip, and an assembler that can generate
machine code from the test programs. For the PACO core, all of these are included in
the git.
From the initial state of the PACO git, these are the changes you have to make so it
actually runs:

• in rocket-chip/:

git revert 4389daf2eef084b518c847f539d3f2db2156ec89

This commit originally introduced patches by sergeykhbr to get the Rocket chip
to run on the type of FPGA used by our group.

• harmonize the versions of the rocket tested and the riscv-tools-tests.
It appears that during conversion of the git with submodules to our structure
with multiple individual git repositories a desynchronization occurred, of the
tests with the version of the chip.

34

2.2.2.1. Changes The changes made to the emulator are minimal: The emulator core
to be made has been changed in the Makefile, to the one specified in the Scala
description of our core: PACOConfigCPP. More substantial are the changes made to the
assembly test programs (see section 2.2.1) so they can test approximate instructions.
Usage of the C Emulator: Usage as well as location of README files is described in
the User Guide (see section 0.4.1).

2.2.3. QEMU

QEMU is an open source virtual machine emulator that was extended by the original
developers of the RISC-V CPU to support their architecture.
It is supplied in repository qemu and built as part of the environment (see
section 2.1.2, paragraph 2.1.2.7).
Further information and resources for QEMU can be found in the appendix.

2.2.3.1. Usage QEMU is used by supplying a virtual machine file which is simply a
hard drive image being booted by QEMU itself.
To use QEMU with the RISC-V / PACO core, an image is already provided

CITATION NEEDED .
This can also be generated manually by preparing a linux kernel, adding any test
programs into an initial ram disk (initrd) and loading everything with a berkeley
bootloader. Instructions on preparing each of these components can be found in
section 2.1.2, paragraph 2.1.2.8.
For the following description the QEMU executable must be located in the PATH
environment variable and we work from a directory containing all components: The
linux kernel (e.g. from vmlinux), the initrd (e.g. from rootfs.ext2) and the bootloader
(e.g. from bbl).
Having prepared the required components as discussed above, a program to be tested
has to be added to the initrd. Let the program in question be called test-program.
This is then inserted into the initrd by mounting it and adding the respective
executable to the file system:

IMPROVE: reformulate (hard to understand)
mkdir -p rootfs && mount -o loop rootfs.ext2 rootfs

cp test-program rootfs/root/ umount rootfs

Having added a program to the initrd, it can now be tested through the virtual
machine. To execute it, run:

qemu-system-riscv -kernel bbl -append vmlinux -drive

file=rootfs.ext2,format=raw -nographic

This will boot the virtual machine. Eventually the entry of a user name is required.
Enter root (no password required). When logged in, the test program can simply be
run by:

/root/test-program

TODO (COULD): loading compiled programs from a running machine

35

2.2.3.2. Modifications done So far we added simulation for the addition and
subtraction instructions (add.approx, sub.approx). For this we added a single
function gen approx in the appropriate file (translate.c) which selects the instruction
to be executed based on additional bits supplied to it.

Problem: No additions for mul.approx?
This function first generates temporary registers to duplicate the operands, determines
how many bits to neglect and copies them from newly added shadow registers. The
actual addition and subtraction instructions are generated as ordinary instructions for
the target, operating on the temporary registers.
The shadow registers are two registers operand shadow[2] defined in the
RISCVCPUState structure that remember the inputs to arithmetic instructions in order
to draw neglects bit from them.
Therefore the operands of the regular addition and subtraction instructions are also
written into these shadow registers in the appropriate functions codegen arith,
gen arith w, gen arith imm, gen arith imm w, gen branch, gen load, gen store,
gen jal, gen atomic, gen csr htif and gen system.
To help in decoding, two macros were also added to the instmap.h: MASK OP APPROX

retrieving the operation to approximate (funct4) and GET APPROX BITS retrieving
approx bits from an opcode.

2.2.3.3. Further modification QEMU uses the concept of a binary translator, called
Tiny Code Generator (TCG), which is used to translate assembler instruction of the
guest
architecture to assembler instructions of the host architecture on the basis of a basic block

CITATION NEEDED .
The translated blocks are then saved and put into a hash table which uses the guest
program counter (pc) as a key. If a guest pc is encountered twice the basic block does
not need to be translated a second time. As all good compilers TCG uses an
intermediate representation called micro-ops. So each extension to a guest only needs
to generate micro-ops. A list of available micro-ops can be found in the file README
and each micro-op is generated by using tcg gen <insn name> function calls.
The CPU state of the guest is represented by a structure called RISCVCPUState and
has all important registers defined in the member active tc. The members of
active tc are then mapped to TCG in the method riscv tcg init in translate.c and
can afterwards be used by micro-ops.
The translation happens in the file translate.c and starts in the function
gen intermediate code internal which runs in a loop and loads a new instruction
from guest memory and tries to decode it in the function decode opc until it reaches a
branch instruction which ends the basic block. The decode opc function decodes the
binary instructions similar to a disassembler and generates corresponding micro-ops.
Adding a new instruction occurs in three steps: Adding a new decoding mask, adding
new major opcodes to the list of opcodes and adding decoder / instruction translation.

36

2.2.3.4. Adding new decoding masks Decoding masks are defined in instmap.h. It
contains a set of enums and macros to extract information from opcodes by means of
bit operations.

2.2.3.5. Adding new major opcodes Opcodes are defined in the same file
(instmap.h) as part of the first enum. A new opcode consists simply of a new entry in
this enum.

2.2.3.6. Adding decoder / instruction translation All the code pertaining decoding
and translation of instructions is located in the file translate.c. Translating a new
instruction is done by first defining a new function for that instruction, prefixed with
gen by convention. As arguments it accepts a disassembly context, the program
counter and the arguments as expected by the corresponding instruction.
This function is called out of the decode opc of the same file in which a new case is
simply added to the switch structure with the instruction’s code as label. Within the
newly defined generator function, target instructions are generated by tcg gen

methods which in turn interact with registers defined for the target.
These registers are either defined in the processor state (RISCVCPUState) or they are
temporary registers used with tcg temp new and tcg temp free.
Whether they are temporary or not, register contents are copied using gen get gpr

and simply handed to target instructions via tcg gen functions. To add a new
register to the processor, it must first be defined in the RISCVCPUState structure. To
make it usable, it must be allocated in the riscv tcg init method using the call
tcg global mem new and defined again as a global static in the file translate.c.

2.2.4. UART debug interface (flashing tool)

The UART flashing system consists of a custom bootloader written for the Rocket SoC
that is embedded as a ROM into the Rocket SoC FPGA bitstream. This bootloader
offers a binary command shell on the FPGA’s UART port exposing an interface into
the SoC’s main memory.
Through this interface any RISC-V program can be loaded and executed without
having to build a new bitstream.
By the time the project group started no method for accessing the memory of the SoC
existed that could be made operational, leaving a built-in ROM for a bootloader the
only entry point for code to be tested.
For changes in the bootloader code to become effective, the entire FPGA bitstream
had to be re-synthesized causing delays on the order of 60 minutes for each iteration in
testing and debugging.
Our custom bootloader in conjunction with a Python script running on a host
computer connected via UART enables us to write into the SoC’s main memory and
setting the program counter to its starting address, greatly reducing the time required
to test a program.

37

2.2.4.1. UART interface The UART interface of the custom bootloader expects a
single byte identifying the command to be executed followed by additional arguments
depending on the command. Currently the following commands are understood:
command
name

code arguments description

NOP 00h none Does nothing. Used for synchronizing by sending
an arbitrary number of zero bytes.

SYNC 10h none Deprecated. Sends a simple response on the UART
to indicate synchronization has set in.

BLOCK
ADDR

21h u32 addr Sets the address of the next block transfer and
reports it back as an eight digit zero-padded
hexadecimal number.

BLOCK
WRITE

22h 256 bytes Writes a single block of data into RAM starting at
the previously configured block address. After com-
pletion, reports the CRC-32 of the received data as
an eight digit hexadecimal number.

BLOCK
CRC

23h none Computes the CRC-32 of the 256-byte block start-
ing at the previously configured block address and
reports it as an eight digit hexadecimal number.

EXEC 42h none Terminates the UART command shell, prints a con-
firmation text on the UART and jumps execution
into the beginning of the RAM afterwards.

LED 51h 1 byte Uses the argument as a bit mask controlling the
GPIO LEDs on the FPGA board.

DIP 52h none Reports the status of the FPGA board’s DIP
switches as a 32 bit mask as an eight digit hexadeci-
mal number.

Upon startup, the bootloader reports its readiness by printing a greeting in the form
PACO Rocket SoC bootloader version 12 onto the UART. Depending on the setting
of DIP switch 2, the bootloader then either loads another ROM into the FPGA RAM
and executes that program (DIP switch set high) or enters the aforementioned UART
command shell (DIP switch set low).
To signal the readiness of the uart shell, immediately before entering it the line
Boot (uart ready) is printed on the UART.

2.2.4.2. UART Out-of-band reset To allow resetting the CPU without having to
manipulate the FPGA physically or even cut power, the UART hardware core was
modified to accept out-of-band communication.
To achieve this, the UART was configured to use a parity bit, in-band communication
occuring with even parity and an odd parity being interpreted as out-of-band data.
This data is interpreted directly by the hardware core and signals a reset signal upon
receiving of the byte sequence DEh ADh BEh EFh. This reset signal is or-combined with
the push-button reset signal of the SoC.

38

2.2.4.3. Flashing tool To facilitate the usage of the UART interface, a Python script
was written that is installed in riscv-uart-flash.
It was written concurrently with the development of the bootloader, thus it supports a
number of deprecated versions. By the time this document was written, bootloader
version 12 was the most up-to-date one.
The primary function of the tool is to reset the connected RISC-V CPU, use the
bootloader’s UART shell to transfer a single program, start its execution and enter an
interactive shell for the user to interact with the program via UART.
The general usage of the tool is invoked by executing it with:

riscv-uart-flash -i -w <program>

Where <program> represents a file name pointing to the program to be loaded.
This can be either an ELF file or a binary dump of its sections4.
The -i command-line option instructs the tool to enter an interactive shell after
flashing is done, otherwise it would just exit quietly.
-w instructs the tool to terminate after an exit code was received from the running
program via UART. For further information on this behavior, refer to section 2.2.5.
By default, UART communication is initiated on device /dev/ttyUSB0 and baud rate
115200. To change these settings, command-line options -p and -b can be used,
respectively.
Further information on usage of this tool can be found by invoking it with --help.

2.2.4.4. Modifications The original UART core located in nasti uart.vhd was not
viable for two-way communication for a number of issues.Problem: By using busy waiting while reading from the UART and thus querying the
status register, the data cache also fetches the data register, popping new bytes from
the internal FIFO.
Solution: The FIFO popsing semantic was removed from the reading of the data
register. Instead, the current value in the receiver FIFO is now removed once the
corresponding sequence number is written into the status register.
Furthermore, the current data value and the corresponding sequence number were
added to unused bits in the status register, reducing the number of words to be read
for UART communication.

Problem: Reading bytes via UART presented extremely high loss rates.
Solution: By offsetting the sampling of bits within a UART frame into the center of
the symbol interval instead of the beginning, clock drift and jitter were remedied and
the loss rate was reduced to a negligible amount.
The usage of block-based data transfer and checksums also aides in the elimination of
transmission errors.

4 The binary dump can be obtained by invoking
riscv64-unknown-elf-objcopy -O binary <input file> <output file>.

39

2.2.5. Rocket SoC Runtime Library

A C library has been written that facilitates writing programs that can be run on an
instantiation of the Rocket SoC FPGA. This library encapsulates several commonly
used features that are mentioned below. It is delivered as a part of the rocket-soc
repository in the directory lib. The directory consists of the include files library (under
include/), the source files (under src/) as well as a makefile used for compiling the
library and installing it into riscv-tools directory. This is done by invoking:

make

make install

In addition to the runtime library, a set of example programs can be found in the
templates/ subdirectory, which serves as templates for a custom application.

2.2.5.1. Program termination In most cases, programs on the FPGA are supervised
by a program running on a host machine, communicating via UART. In order to
signify that the FPGA program has terminated, a special sequence of bytes is sent by
the FPGA, consisting of three bytes 00h XXh 0ah, where XXh is a one-byte exit code.
This exit code should be 0 to signify successful program execution and a non-zero
number to signify its failure.
Under no circumstances may the exit code equal 10 as this may be misinterpreted as a
new line character.

2.2.5.2. Library Components Currently the library in the rocket-soc repository
contains the following parts:

• UART communication (include rocket/uart.h): Methods for reading and
writing text or binary data via the Rocket SoC’s UART port.
Additionally some methods to output integers in hexdecimal representation and to
signal program termination are also provided.

• String composition methods (include rocket/strutil.h): In order to compose
strings (e.g. for UART transmission), several methods are provided that write
characters into a pre-allocated buffer similar to the behavior of the sprintf

method.

• Clock cycle counting (include rocket/util.h): A simple method that returns the
number of clock cycles since the startup of the FPGA, as a 64 bit integer.

2.2.5.3. Template Applications All template applications come with a makefile
supporting at least the targets all, clean and run. The run causes all necessary
compilations to be executed and then downloads the program onto the FPGA via the
UART; running it in an interactive shell.
The UART port /dev/ttyUSB0 is used by default. This can be modified by specifying
the UART environment variable, e.g. as such:

UART=/dev/ttyUSB1 make run

40

Available templates are:

• basic-application: This is a basic application showcasing UART
communication via a line-by-line echo service as well as transmitting exit codes
via uart exit upon receiving the termination command (’q’).

• timing-application: This template demonstrates timing analysis based on
clock-cycle counts by using the built-in clock cycle register.

• lut-application: This template demonstrates the use of the Lookup-Table
based approximation hardware. In addition to the usual source files, a file
lut0.input can be found in this directory. It represents the configuration of a
single lookup-table to be integrated into the program.
From within the main.c, this lookup table can be queried using the LUTE macro.
To add further lookup tables, simply add more .input files and add them to the
LUTS variable in the Makefile.

2.3. Modifications

This section gives an overview of the changes that were made to the original code in
the environment as such. This does not include modifications to specific components as
discussed in later sections of this document.

TODO (MUST): list parts that were added / altered and refer to sections detailing
the purpose of those changes

2.3.0.1. Makefile adjustments To eliminate the potential for errors in the process of
compiling and integrating the Rocket Chip into the Rocket SoC, the relevant makefile in
Makefile was adjusted to use the PACO-specific chip configuration and to support the
install target, which copies the generated verilog file into the right location for use by
the Rocket SoC: Top.GnssConfigNoFPU.v

3. Compiler System

The compiler system is a software solution that generates machine code files executable
on the PACO core.
This task subdivides into three separate components: First, high-level code
compilation translates C/C++ code into assembly instructions targeted for the PACO
core as well as Lookup table descriptions.
Second, the lookup table compilation component accepts such descriptions and
generates data sections in the form of assembly code describing the lookup table
configurations.
Finally, machine code generation accepts assembly code and translates it into a single
binary file ready to be executed on a PACO core implementation.

41

clang LLVM

riscv-lut-compiler

riscv-lut-startup

gas

riscv-uart-flash

clang/LLVM ln

.c/.cpp

.S .o

elf

.input .c

Figure 3: Toolflow for generating executable utilizing the PACO language extensions and
hardware cores.

3.1. Original Code Base

The compiler system consists of several programs. The rocket core uses Clang as
compiler front-end and LLVM as compiler back-end. GNU-binutils is generating the
target code. To introduce approximation all programs are modified. To generate the
configuration for the LUT hardware, the compiler system was extended with the
LUT-Compiler (LTC). Since the LTC is a new tool, there is no basic implementation.
Clang and LLVM were used at version 3.3 which was the current state for the rocket
core at project begin. The interactions of all these tools are described in our design
document A. A detailed description of the building process can be found here 0.3.1.2.
The following sections describe each tool ant the modification in detail.

3.2. Modified Code

3.2.1. High-level Code Compilation

High-level code compilation consists of translating the source code of an high-level
programming language into assembly code. The following subsections give a detailed
view on the modification within Clang (repository: riscv-tools-llvm-clang) and LLVM
(repository: riscv-tools-llvm).

42

3.2.1.1. General Modifications To properly put the PACO compiler extensions in
place within Clang, a number of general modifications were made. These adjustments
helped to smooth the process of integrating the necessary extensions.

PACO Language Option The adding of a language option to Clang helps to
encapsulate all features of the PACO extensions.
This language option serves two purposes: First it offers the disabling of PACO
extensions during Clang compile time. Two, it serves as an indication within the Clang
source code for all modifications made for the PACO extensions. This indication
enables programmers to identify parts of code that are responsible solely for handling
PACO extensions. The language option was added simply by modifying the language
options tabledata file (LangOptions.def).

PACO Keyword Definitions For better maintenance purposes all PACO specific
keywords and constants are stored within a new created file (PACO.h). This provides
an much easier process for adding and modifying keywords.

Preprocessor Macro To make the original compiler capable of understanding the
PACO extensions, the preprocessor macro paco was added according to the design
document A. This macro is defined as an empty symbol in LangOptions.def and can
only be used if the PACO language option is set.

Error Messages For outputting error messages, new errors with corresponding
messages were defined. The errors of the parsing process are listed in
DiagnosticParseKinds.def. Equivalent are the errors of the semantic analysis stored in
DiagnosticSemaKinds.def. In the case of an error, a Diag object is called using the
source location and an error flag as operands. Errors ,appearing within the code
generation process, are not described in an own definition file. These errors are printed
by using LLVM classes which contain error functions. The source location and the
error message are handed as operands.

3.2.1.2. Parsing and Analysis of the Approx Decorator The approx decorator is the
principal way of adding any approximation into C/C++ code. It is represented by a
new declaration node within the abstract syntax tree which built by Clang.

Context Parsing the approx decorator begins with the designation of a new
keyword, approx, in the keywords tabledata file TokenKinds.def. This keyword will be
interpreted at declaration: To implement approximate types and functions, it is part of
declaration specifiers, thus accepting the approx decorator anywhere types are
expected: Type definitions, variable declarations, function definitions. This has been
implemented.
To parse an approx decorator as part of a declaration specifier, a new case was added
to the declaration specifier function in ParseDecl.cpp. In this case of the occurrence of

43

an approx keyword, the resulting decorator is registered within the declaration
specifiers structure. After parsing, the declaration specifier is converted to a Decl

object. To keep the ApproxDecoratorDecl as a member of the declaration, the
ApproxDecoratorDecl is transferred to a new object, done in SemaDecl.cpp.

Approx decorators Approx decorators are represented in the abstract syntax tree
as a new declaration node type. This node is defined in Decl.h as
ApproxDecoratorDecl class. This class itself holds an array of KeyValue instances
that each represent a single key-value pair as defined in the approx decorator.
As such they have an identifier and one of two values: A StringRef in case of a string
key-value or a APValue for numeric key-values.
The latter is a real or complex integer or floating-point value.
The parsing of the approx decorator itself occurs in ParseDecl.cpp in the method
ParseApproxDecorator. This method parses all key-values enclosed within parenthesis
following an approx keyword, before passing them to the semantic analysis where an
approx decorator instance is created.
While parsing the key-values, either a sequence of string literals or an expression are
accepted as values. The semantic analysis of the key-values then extracts a single
string or a number from those entities.
To extract a number from an expression, it must be statically evaluable. If more than
one approx is used in the same declaration, they will be combined and interpreted as
one approx field.

Approx Decorator Key-Values During the process of creating a new approx
decorator, new key-value objects are created. These objects are filed with the
information from the source code. Before writing the information to these key-value
objects, some testing is done. It is important that the given value matches the
expected value of the used identifiers. For this purpose it is proven if the value is either
a number or a string literal. These checks are done by parsing the key-values. For each
legal identifier an own test is executed. In case of the neglect amount key-value, it
will be tested, if it contains a valid amount (2, 4, 7, 10, 15, 20, 27). It is also checked if
the key-value of this identifier already exists. In case of existence, it will be overridden
and a warning will be produced. For easier computations in later parts, the value of
the neglect amount will be translated into a mask value. Here the original identifier
keeps untouched. In the case of using the neglect amount and mask within one approx
decorator will create an error. Key-value checking for LUT related keywords have not
been implemented.

Preparations for the Lookup Table Compiler (LTC) For using the LTC, the
approximated function needs to be written into a specific file. For invoking this process
within the source code the keyword strategy is needed. The parsing process of this
keyword and emitting of the new file is implemented in ParseDecl.cpp. Before the
approximated function is written to this file, the LUT definitions (key-values) from the

44

approx decorator are parsed and stored in the beginning of the file. These definitions
are separeted from the function with "%%" as separation markers. The name of the file
has the format uuid.input, where uuid is an universal unique identifier which is used
to identify the function. The tokens of this function are not consumed during these
process, so Clang can still perform its semantic analysis of this function, because the
LTC has no semantic analysis. This is the reason why the code of approximated
functions are not emitted in code generation. Currently the printing of includes to the
emitted output file is not implemented and it is necessary to insert them manually.

3.2.1.3. Parsing and Analysis of Pragmas

Context Pragmas are annotations in the source code configuring the translation
process of other constructs such as approximate types.

Definition In Clang, pragmas are translated by the parser into a special token
identifying which pragma it is, e.g. the code #pragma paco combine is represented by
a single token of kind pragma paco combine. As such they are defined in
TokenKinds.def via the ANNOTATION macro.

Lexing The actual parsing of pragmas is performed by pragma handler classes
inherited fromPragmaHandler, declared in ParsePragma.h and implemented in
ParsePragma.cpp. For our pragmas we added PragmaPACOCombineHandler and
PragmaPACOIntermediateLiteralHandler.
These handlers get invoked during parsing in their HandlePragma method which
consumes a number of tokens and emits new ones depending on the pragma.
To register the pragma handlers so that they get invoked in the parsing process, the
Parser class gets instances of them as fields which are initialized in its constructor
(and cleaned up in the destructor) in Parser.cpp.
For our extension, the handlers only get initialized if the PACO language option is set.
Disabling our pragmas altogether if it is not.

Parsing In the parser, methods HandlePragmaCombine and
HandlePragmaIntermediateLiteral are added that each accept a token of the
respective pragma, decode it and pass their values on to the Sema library.
To put the pieces together, these methods get called in the appropriate steps of the
recursive descent parser upon occurrence of the corresponding pragma tokens:

• Within ParseExternalDeclaration in Parser.cpp.

• Within ParseStatementOrDeclarationAfterAttributes in ParseStmt.cpp.

Semantic Analysis The values associable to each of the settings controlled by
pragmas are defined in enumerations in Sema.h as part of the Sema class. It also has a
field for each of the settings containing the current value, to be used during parsing.

45

To act on the occurrence of these pragmas itself, the Sema class is furthermore extended
with methods ActOnPragmaPACOCombine and ActOnPragmaPACOIntermediateLiteral

3.2.1.4. Parsing of Approximate Arithmetic and Approximated Functions

Context In Clang, arithmetic expressions are separated into a left hand side and a
right hand side. The left hand side contains the result and the right hand side contains
an operator and an operand. If there is another operator following the operand which
is typically the case in arithmetic expressions, the right hand side is also split into a
new left hand side and a new right hand side. The new left hand side contains the
result of the computation of the new right hand side which contains two operands and
an operator. If there is another operator again, the splitting is executed recursively
until there is no operator following.

Approximate Arithmetic An arithmetic computation is approximate depending on
the approximate definitions of the result variable (RelaxMask) and the approximate
definitions of the operands (InjectMask) which are combined to the neglect mask
which is stored to the operator expression.

Parsing Arithmetic Approximations Arithmetic computations are part of
assignments. Therefore the parsing of approximate arithmetic expressions also start in
ParseAssignmentExpression in file ParseExpr.cpp. As long as the order of priority of
the operators are equal, the function ParseRHSOfBinaryExpression which implements
the splitting described above, will be executed. If this order is lower then conditional
order of priority (which is the case by e.g. multiplication, computation with braces or
else), the parser descends and calls ParseAssignmentExpression again to compute
this values before continuing. This results into a recursive loop which makes it
necessary to know when the parsing has started with the first call of the function
ParseAssignmentExpression. This is done with the parser variable relaxIsSaved.
At this starting point the RelaxMask from the result variable is also saved, because the
RelaxMask from the result variable is needed later for the analysis of approximate
computations. This RelaxMask is stored to every operand expression of this
assignment. If the result variable is not defined as approx, the RelaxMask is set to a
precise value. When ParseAssignmentExpression is called again by a descend call,
the saved RelaxMask is also stored to the descend expressions. The mask is only
released when the parsing of the assignment expression is done and the relaxIsSaved

variable is set to false. To ensure the written masks are not deleted when the operand
expressions are replaced by other expression objects, which happens at some locations
in the code (e.g. by using braces in arithmetic computations), the function
copyPACOValues is used to copy the mask values from the old expression.
While parsing, all operands and operators of an assignment are combined to a tree
structure. Figure 4 shows two examples for this tree. You can see that all operands are
always leafs, all operators are never leaves and the root is always the assignment

46

root

=

leaf

leaf leaf leaf

leaf

leaf

nodenode

node

node

result

*

a b c

d

e

+

+

-

f

+

leaf

node

result = a*b+c+d-e+f

root

=

leaf

leaf

leaf leaf

leaf

leaf

node

node

node

node

result

*

a

b c

d

e

+

+

-

f

+

leaf

node

result = a*(b+c)+d-e+f

Figure 4: Example of PACO tree for approximate computation analysis

operator. This is needed to identify the source of the expression in the analysis of
approximate computations. A leaf which represents an operator contains the mask
value in the approx decorator, where an operator node, which contains an intermediate
result, has no approx decorator. An operator node contains the mask value as a result
in the NeglectMask, a variable which was added to the Expr class, implemented in
Expr.h. The figure 4 also shows what happens if we leave out the braces. Without
braces, the order of the parsing is different, which results into a different computation
order.

Parsing of Call Expressions Similar to copy the PACO values in expressions, the
approx decorator gets lost when a new declaration node is produced in the semantic
analysis. To prevent this the approx decorator is copied from the old to the new
declaration node.

3.2.1.5. Analysis of Approximate Computations

TODO (MUST): figure: abstract syntax tree with clang class names, annotated with
changes made by us (ask basti for further details)

After parsing the approx decorators, the values of the approximate definitions are
stored in the ApproxDecoratorDecl. For executing approximate computations in
hardware, the approximate values must be stored in the BinaryOperator which
contains the binary operation for arithmetic computations. Therefore the needed
values for the computation of the approximation level are stored in the class Expr

Expr.h. These values are filled with data in the function SetMasks which is
implemented in the file SemaExpr.cpp. In this function, the masks are set depending
on the pragma values as described in the design document A. First the InjectMask of
both sides are computed depending on their individual neglect value. If the operands

47

are leafs in the PACO tree (constructed while parsing), the neglect values have to be
read from the approx decorator of the operand. If the operator is no leaf, it can simply
be loaded from the operand expression. When the left and right InjectMask is loaded,
the pragma intermediate literal defines how intermediate inputs are handled.
When no valid inject values were loaded, the values are treated as completely precise.
The relax value was set by the neglect value of the result variable, as mentioned before.
The pragma combine defines the combination mode to decide which value (either the
InjectMask or the RelaxMask is stored as result NeglectMask in the result expression.

3.2.1.6. Code Generation

Emit ALU Instructions If an expression of arithmetic calculations (here only
addition, subtraction and multiplication) contains a NeglectMask and its
approximation level is not full precise, then a new instructions will be emitted
CGExprScalar.cpp.

Emit LUT Intructions There are two steps needed to emit a LUT instruction
correctly. First, in CodeGenFunction.cpp the emitting of the function code will be
prevented, if the function is marked as approximate function by the key-value
strategy. Second, in CGExpr.cpp the lute and the lute3 instructions are called.
This instruction are printed instead of the original function within the intermediate
code, which will go to LLVM for further processing. To store the uuid into these
functions, the uuid is separated into four 32 bit values, because LLVM can not deal
with 128 bit inputs in this version we use.

3.2.1.7. Test Code To test Clang, two test files has been added. The first file
ApproxGeneralAndALU.cpp contains test code for general tests of the approx
decorators and the approximate ALU. The second one ApproxLUT.cpp contains test
code for the LUT related components. The test files can also be used as an example to
show how approximate code is written correct.

3.2.2. LLVM Translation

This section covers the extension of the LLVM backend as an intermediate between the
Clang C/C++ frontend and the machine code generation performed by the GNU
binutils. All of our changes are done in the riscv-tools-llvm repository. For our
extensions, we use LLVM intrinsics (see Appendix A.2) to represent the custom
instructions added. This is possible as they are not affected by other instructions and
do not affect them.

3.2.2.1. Adding Intrinsics, Translating to Instructions All modifications to LLVM
were handled using intrinsics which are a lightweight way to pass new instructions
through LLVM without much further processing.

48

Intrinsics are statements in the LLVM intermediate representation and get translated
to assembly instructions.

Definition To add an intrinsic for use with RISC-V, it must first be defined in the
file IntrinsicsRISCV.td folowing the format laid out by the intrinsics already defined
there.
The intrinsic class accepts three arguments: The result value types, the argument value
types and additional options. For available data types refer to Appendix A.2.
The final argument specifies additional options as a list of symbols, most notably
IntrNoMem, specifying that the intrinsic will not interact with memory but rather work
on the processor’s register file only.

Translation: Instruction Format To output instructions in a new format as
required for our approximate instructions, these formats must be specified in
RISCVInstrFormats.td.
The best practice is to simply copy an instruction format type and adjust it to suit the
needs of the new format. For further information on specifying instruction formats
refer to Appendix A.2.

Translation: Instruction Instructions themselves are defined in
RISCVInstrFormats.td.
They consist of a single declaration using an instruction format as described above.
The arguments in instantiating the instruction format can be literals, such as for
mnemonics and instruction codes, or references to intrinsics and internal registers.
Further information can be found in Appendix A.2.

Translation: Instruction Info The instruction info, implemented in
RISCVInstrInfo.td, defines the opcode and the LLVM internal types of the input and
output for the intrinsic instructions, which are implemented in RISCVInstrFormats.td.
The LLVM internal types are either register types GR64 and GR32 for 64 bit and 32 bit
input/output or an immediate value with a specific bit width.

Translation: Operands In the file RISCVOperands.td are the immediate operands
defined, which can be used in the file RISCVInstrInfo.td and in the file
RISCVInstrFormats.td. To define a new operand just copy any existing one and edit
the name. If the bit width has to be set to a value which does not exist so far, a new
immediate value has to be added in the same RISCVOperands.td and a new function
for checking the bit width has to be implemented in RISCVAsmParser.cpp. This was
the case for example for the variable imm32zxlutroc which has a bit width of just one
bit, so a new definition for U1Imm was needed.

Adding Test Cases Test cases are added to the directory RISCV. A test can
simply be added by copying an already implemented one and just change the

49

instruction declaration and the intrinsic call to the needed input which was defined in
the corresponding .td files. For complex tests, you can also use Clang with the
compiler flags -cc1 -emit-llvm, if the new intrinsics were added in the correct parts
in Clang. For further information on writing tests refer to Appendix A.2.

3.2.2.2. Selection DAG, Passes and UUID-Translation

Context The Selection DAG is an abstraction of code implementations which helps
to identify the optimal implementation of an LLVM-IR code in assembler code. All
nodes of the Selection DAG, which are instances of the class SDNode, perform all kinds
of tests. These tests called Passes are responsible to make sure every input is correct.
In some cases they also perform a correction (for example when a pseudo instruction is
split into two normal instructions).
Since the UUID, which is used to identify the different functions which are
approximated in the high level code, is a 128 bit value, it is impossible to store the
whole value into an input for the new LUT instructions. Therefore, the UUIDs of all
functions are translated into sequential indices. This was the reason for creating a new
Pass.
TODO (MUST): figure: LLVM translation flow: Selection DAG and passes

Initialize the new Pass PACO To add a new Pass to LLVM, several additions were
made: First of all a new header file is needed to define the Pass functions. This is done
in Paco.h. Next steps consist of the registration of a new Pass module, which is done
by defining the function which registers the new module to the header file
InitializePasses.h and the implemention in the corresponding file paco.cpp. Here the
registration for each function, in our case only initializeLutTranslatePass, is
called, which is implemented in LutTranslate.cpp. After creating the function
initializePACO. It can be called in llc.cpp. In LutTranslate.cpp a new module was
implemented and also the function runOnModule which calls the translation pass for
the LUT uuid.

Implementation of LUT Translation Pass The basic idea in the LUT translation
Pass, which is implemented in LutTranslate.cpp, is to map the UUID to up counting
sequential indices. Therefore all UUIDs are saved in a map and when they first occur,
mapped to a new index. To identify the UUID, it is stored into a 32 bit array, because
the UUID is transmitted from Clang to LLVM via four 32 bit values. This four values
are compared to earlier existing UUIDs if any exist. When the uuid exist, it will
updated with the saved index, otherwise a new index will be created and the UUID is
updated with it. The update stores the new value to the fourth input. This happens,
because only one value can be used as input for the hardware. To prevent errors, the
other values are stored with zeros.

50

3.2.3. Machine Code Generation

Machine code generation is the final stage in the compilation process, translating
assembly code into binary code.
This is handled by the GNU binutils assembler which spans two repositories:
riscv-tools-opcodes for the description of the new opcodes and riscv-tools-gnu-toolchain
for the actual translation.

3.2.3.1. Modifying the Assembler

Defining the Opcodes Opcodes themselves are defined in the file opcodes as a
single opcode per line consisting of the opcode mnemonic, the argument components
and a number of fixed bits in the opcode.
For changes in the opcode definition file to take effect, the opcodes must be re-built by:

cd riscv-tools-src/riscv-opcodes

make

This step is always required, because assembly toolchain is built seperately from the
rest of the GNU toolchain.

Adding Opcodes to the Translator For new opcodes to be recognized by the
parser, they must be registered in riscv-opc.c as part of the constant structure
riscv builtin opcodes. The individual fields specify the mnemonic as
defined in the opcodes (see above), the instruction set in terms of RISC-V instruction sets

CITATION NEEDED ,
the set of arguments, parsing function pointers and a flag mask.
The function pointers are auto-generated parsing instructions for detecting the
respective instruction (MATCH and MASK) as well as a custom filter used to select
instructions based on other factors than the static part of the opcode. This can simply
be specified by match opcode which does no special filtering.
The final flag mask accepts a single bit, 1 indicating the mnemonic is an alias for a
different instruction.

Adding an Instruction Field If a new opcode requires a special field that has not
been defined before, it must be defined as such both in the opcodes definition and the
translator.
Note that an instruction field has two identifiers: One used in the opcode definitions
and the other used by the translator.
Adding it to the opcodes definition is done in the python script parse-opcodes in the
dictionary arglut, mapping field names to a tuple (start, end) defining the bit range
comprising that field.
Adding it to the translator is done by adjusting the file tc-riscv.c. The new instruction
field must be accepted as valid in the case structures in validate riscv insn and
processed in riscv ip. The identifier used here is a single character to be used in the
opcode definition (see 3.2.3.1).

51

Finally the instruction field must be registered with the disassembler as well. This is
done by adding a case into the print insn args method in riscv-dis.c.

3.2.4. Lookup Table Compilation

TODO (MUST): figure: internal tool flow, interoperation between compiler parts

The Lookup table compiler (LTC) is a command-line tool which translates a target
function description into a lookup table description and configuration bitstream ready
to use with our LUT hardware core.
During the compilation two principal actions are taken: Segmentation and
Approximation.
Segmentation is the process of deriving the domain of the target function’s input into
intervals which form the individual segments of the LUT.
This is achieved by first determining the width of this domain and thereby selecting
the exponent of the segment selection bits of input words.
After that, a user-selected segmentation strategy is executed to select intervals from
the previously computed domain space.
Approximation operates on each segment individually and computes the affine linear
function computing values in that segment by fixing the values on the leftmost and
rightmost boundaries.

3.2.4.1. Usage The LTC handles three different file formats: input files, intermediate
files and output files. It can read input or intermediate files and compile into output
files or intermediate files.
To specify characteristics of the target LUT hardware cores, an additional architecture
file can be provided.
The minimum input to the LTC is a single input file providing values for the keys
name, bounds, segments and approximation, specifying the identifier used for the
data sections of the LUT, the parts of the input domain for which approximation is
required (all other inputs are interpreted as don’t cares), as well as the segmentation
and approximation strategy to be used, respectively.
In most cases an additional architecture file is used to tell the LTC about the layout of
the LUT core to be instantiated. An example of how to write input files can be found
in an application template in lut-application.

3.2.4.2. File Formats

Input Files An input file is an excerpt from the surrounding program in which the
LUT resides. It contains a list of key-value pairs defining the compilation settings and
properties of the LUT, the signature of its target function as well as C/C++ source
code defining the target function. Input files are generated automatically by the PACO
compiler during the compilation process of the surrounding program.

52

Intermediate Files Intermediate files contain a number of segments and
configuration data for the LUT. It is generated by the LTC and can be read again,
forming an entry point for external programs or manual intervention into the LUT
generation process.

Output Files Output files contain only the bitstream used for configuring a LUT
hardware core. This can be outputted either as C code containing a single constant
definition of the bitstream data, or as an ELF which was generated from such code.

Architecture Files Architecture files are a list of key-values syntactically identical
to the first section of input files, overriding default architecture-relevant settings (see
section ??).

Weight Files Weight files are optional files used for assigning levels of importance
to input values, thus prioritizing those with a higher number in approximation and
segmentation.

3.2.4.3. Command-line Options With each invocation of the LTC, a single
compilation process takes place. Therein the input, output and parameters must be
specified along with an input file name:

• By default, the input is expected to be in input format. This can be switched to
intermediate using the command-line switch -c.

• The output is generated as ELF by default. To generate the corresponding C++
code instead, add -C to the command-line. Specifying -i will generate
intermediate code.

• To specify a weights file to be used for segmentation and approximation, use -w
followed by the path to the weight file.

• An architecture file can be set with --arch followed by the architecture file name.

Further command-line options can be found by invoking the LTC with -h. These are
not important for normal operation.

3.2.4.4. Segmentation Strategies (Primary) Primary segmentation strategies are
used on an empty set of segments for a LUT and they generate a number of segments
that may be subdivided further with a secondary segmentation strategy.

Uniform Uniform segmentation creates a set of equally-sized segments covering all
the input domain as selected by the user.
Therefore it first determines the minimum segment width feasible so that the
maximum alotted number of segments is not exceeded this way.

53

Domain

Segments

Domain

Segments

Domain

Segments

Target Func.

Uniform

Log-right

min-error
(interpol.)

Figure 5: Examples of segmentation strategies. Each group shows the designated do-
main to be segmentated and the segment intervals placed. Note that for error
minimization, an approximation strategy must also be specified.

Logarithmic Logarithmic segmentation creates a set of segments incrementally
increasing in width by a factor of two, covering the entire width of the input domain,
disregarding intervals that are not part of the input domain requested by the user.
There are two modes of operation for this strategy: Remainder-based and Binary
representation-based. The former operates by starting with an interval width of 1 and
adding intervals of increasing width until that width would exceed the remaining width
to be covered. This remainder is then added.
Binary representation-based segmentation on the other hand creates one segment for
each bit in the binary representation of the domain width.
Independent of the method used, for left-bound (right-bound) logarithmic
segmentation, the generated segments are then sorted in ascending (descending) order.

Error Minimization This strategy starts by generating minimum-width segments
for all the parts of the input domain that need to be covered. After that it successively
combines two segments until the maximum number of segments was attained.
Selection of the pair of segments to be joined is performed greedy by choosing the first
operation exhibiting the minimum mean square error on the input domain (min-error
strategy). To instead use the maximum gain in precision (maximum loss of error), use
the min-error-gain strategy.

3.2.4.5. Segmentation Strategies (Secondary) Secondary segmentation is
performed on each segment generated by the primary segmentation strategy, aiming to
further subdivide segments, utilizing segments left over by the primary segmentation
strategy.
The strategy is thus invoked once for each segment, distributing the number of alotted
segments per subdivision step equally.

54

interpolated linear step

Figure 6: Examples of approximation strategies. The target function is shown in black,
being approximated by an affine linear function (blue).

Uniform Uniform secondary segmentation operates exactly as it does in its
primary form.

Logarithmic Logarithmic secondary segmentation operates exactly as it does in its
primary form, using the width of the segment to be subdivided instead of the total
domain width.

Error Minimization Error minimizing secondary segmentation operates on the
entirety of segments instead of just one, splitting one segment at a time into two new
segments until the maximum number of segments was reached. The selection process is
identical to the one used in primary segmentation.

3.2.4.6. Approximation Strategies In the following all the available approximation
strategies are listed.

Interpolated The simplest is the interpolation strategy. Here the target function is
evaluated for the lower and upper segment boundaries and these values are used to fix
the affine linear function of the segment, simply interpolating between those two values.
While this may generate higher mean error rates within each segment, it is the only
strategy that guarantees the absence of discontinuities between two adjacent segments.

Linear Linear approximation samples the target function at each possible input
value and fits a linear function to that data set by minimizing the mean square
deviation.

Step Similar to linear approximation, samples the target function at each possible
input value and fits a constant function to that data set by minimizing the mean
square deviation.

3.2.4.7. Implementation Overview The remainder of this section is to be regarded
as an overview and explanation of the design and construction of the Lookup table
compiler

55

to be read in conjunction with source code documentation provided in the code files itself.

TODO (MUST): refer to doxygen

An overview of the important files in the LTC source code can be found in figure 7.
Building is performed through the sole makefile located in the source code directory
riscv-lut-compiler, which first builds a dependency file make.incl by traversing the
directory tree and listing all source code (.c,.cc,.cpp) and lexer (.l) files and
generating makefile rules accordingly.
The LTC main routine is located in riscv-lut-compiler.cpp. The compilation process
therein utilizes the two principal classes of the software: WeightsTable and
LookupTable. The former is used to handle the weights functions to be specified by the
user while the LookupTable class handles input/output of files, translation from
segments to bitstreams and management of segments.
Segmentation and approximation strategies are added as a modular system by
declaring them in strategies decl.h and implementing them in a source file in the
strategies directory.

riscv-lut-compiler.cpp

options.h/cpp
command-line options

lut.h/lut.c
Lookup Table main class

strategies.h/cpp
Modular strategy management

weights.h/cpp, weights-lexer.h, lex.BaseWeights.l
Weights table representation and lexer

arch-config.h/cpp
architecture-specific options

bounds.h/cpp, bounds-lexer.h, lex.BaseBounds.l
Input domain representation

segdata.h
segment data vartype

deviation.h/cpp
error metrics

segment.h
segment type

dlib.h/cpp
Dynamic loading of shared objects

input-lexer.h, lex.BaseInput.l
Lexer for input files

intermediate-lexer.h, lex.BaseIntermediate.l
Lexer for intermediate files

segdata-incl.h
Segmant data vartype metaheader

generated from

strategy_decl.h
Declaration of strategies

strategy_def.h
Definition of strategies

Figure 7: Overview of the importand source code files of the LUT Compiler Tool.

Third-party Software

• Alpha Framework: Parts of the LTC depend on components from a code library
called alpha. This library is a repository of code gathered throughout several
years and was not written as part of this project group.

• Flex Scanner Generator: To read the different text-based formats used by the
tool, the flex scanner generator was employed. It inputs lexer files (.l) and
generates C/C++ source code used for scanning raw character streams.
To improve usability, these scanners were created with source positions in mind,
keeping a record of the location in the raw character stream to generate
appropriate warnings and error messages where needed.

56

7168
0

216-118944 25600 35840
39936
(7168+215)

0 1 2 3 4 5 6 7 8 9 10111213141516

0 1 2 3

Input

Segment

Hardware

Figure 8: Coordinate systems used in the LUT Compiler Tool for an examplary trans-
lation of the highlighted input domain. In this example the segment space is
215 value wide with an offset of 7168. With 2 selector bits the segment space
is subdivided into 16 principal segments. They are reduced to 4 segments (2
segment bits). Dotted lines in the hardware space indicate individual evaluable
points which result from a single interpolation bit.

Coordinate Systems During the generation of segments from a target function,
several different coordinate systems are used to represent positions in the target
function’s domain.

• Input Space: This is the most basic coordinate system, being simply the domain
of the target function itself.

• Segment Space: In segment space not the entire domain is represented but rather
the part of it that is being mapped onto the LUT.
Segment space is derived in a number of principal segments, that are segments of
minimum expressable width (see selectorBits in section 3.2.4.7). A point in
segment space is identified by a tuple (i, o) with i ∈ N , o ∈ [0, 1]. i represents the
index of the principal segment and o is an offset into that segment.

• Hardware Space: Hardware space is very similar to segment space, however
instead of having an index into a principal segment and a real-valued offset it
uses a segment (as generated in a segmentation strategy) and an integer
(representing the interpolation bits, see section refsec:ltc-arch-config).
Therefore, hardware space can express exactly those points in the input space
that can be evaluated in the LUT hardware core.

Architecture Configuration

TODO (MUST): add reference to bitstream layout figure

Architecture-specific values are stored in a structure defined in arch-config.h. The most
important values are as follows:

• selectorBits This is the number of bits in an input word that are fed into the
address translation PLA.

• segmentBits This represents the number of segments that can be stored in the
LUT and thereby the number of outputs of the translation PLA.

57

• interpolationBits Number of additional bits fed into the interpolation
multiply/add unit. The total number of bits is the sum of selectorBits and
interpolationBits.

• plaInterconnects: Number of interconnection rows between the and and or planes
of the translation PLA.

• base bits: Number of bits for the base value of each segment. A segment is an
affine linear function attaining the base value at the lower bound and increasing
by a factor of incline.

• incline bits: Number of bits for the incline value of each segment. A segment
is an affine linear function attaining the base value at the lower bound and
increasing by a factor of incline.

• delay addressTranslator, delay controller, delay inputDecoder,
delay interpolator: These settings specify how many clock cycles of delay are
introduced in each of the configurable pipeline stages of the LUT hardware. In
most cases all of these are 0 (default). For more information refer to section 4.2.

When specifying key-values in an architecture file, the name of the key-value is
identical to the field in the arch config t structure.

3.2.5. Error Handling and Testing

3.2.5.1. Exception classes Defined in error.h there are a number of exception classes:

• FileIOException: A file could not be read or written.

• SyntaxError: An input file is invalid in terms of its syntax. This is only thrown
when reading an input file or buffer.

• RuntimeError: Some user-specified semantics do not check out. This can never be
a programming error.

• CommandLineError: An invalid command-line was specified when running the
program.

• HWResourceExceededError: If the hardward resources as specified by the
architecture configuration are exceeded during compilation, an instance of this
exception is thrown.
This can occur if segmentation yields a sequence of segment boundaries that is
too complex to be mapped with the number of PLA interconnects available in
the LUT.

In addition to these, asserts are used throughout the program to emit a critical failure
when invariants are unmet that are a result of program design rather than user input.

58

3.2.5.2. Logging System The LTC uses a logging system from the alpha framework
which distinguishes between error, warning, info and debug messages, printing them
onto standard error / output using ANSI color codes.

3.2.5.3. Unit Tests Utilizing a minimalistic unit test feature from the alpha
framework, critical components of the program are tested in-code. These tests are
executed before the main routine runs and thus should be excluded from a production
build of the LTC. This can be done by specifying

-DALPHA UNITTESTS=0

when running make.

3.2.5.4. System Tests Testing the overall behavior of the LTC, a number of system
tests were written, located in tests. To execute them, simply run:

make tests

This will compile the LTC itself, if not done already, and run all of the tests in
arbitrary sequence, aborting if one of them fails.

3.3. Limitations and improvement-worthy parts

3.3.0.1. Floating-point Support In accordance with overall project group progress,
support for floating-point approximation was not implemented.

3.3.0.2. Target Function Evaluation Currently the target function is evaluated by
running an external compiler program and loading the result as a shared object into
the LTC’s memory. This process is somewhat unstable and could be better solved by
using a JIT compiler such as Clang.

3.3.0.3. Default Strategies Currently the LTC does not have any default values for
strategies.

4. Approximation Hardware

4.1. Environment in Rocket chip

We extended the Rocket Chip, which is an implementation of the RISC-V architecture,
written in Chisel (cf. figure 9).
Our extensions consist of an approximate ALU and a Lookup-Table (LUT), both
instantiated alongside the precise ALU of the Rocket Chip. The LUT itself is a
hardware component described in VHDL, thus it is instantiated in the Rocket Chip
pipeline via a black box interface.

TODO (MUST): figure/table: directory structure of rocket-chip, describing what
directories do, how important they are and where programmers need to look.

59

CPU (modified RISC V)

IF ID EX MEM WB

precise
ALU

approx.
ALU

RAM

PACO core

LUT core (VHDL)

LUT interface (chisel)

Figure 9: Overview of the PACO CPU core. The Rocket Chip implementation of the
RISC-V CPU core is extended with an approximate ALU and a Lookup-Table
(LUT). The LUT core itself is written in VHDL while all of the remainder is
described in Chisel.

4.1.1. Chisel

Chisel is a hardware construction language developed by UC Berkeley for embedded
programming using the Scala programming language. Scala or Scalable Language is a
statically typed language that provides functional and object oriented methods of
writing code. Scala runs on the Java Virtual Machine (JVM), making it platform
independent.
Chisel is created by extending Scala in order to describe hardware; thus enabling
programmers unfamiliar with the embedded domain to program hardware fast and
easy. Chisel is open source and has a growing community of developers contributing to
it.
The appendices A.4 and A.5 provide links to get started with Chisel and Scala
respectively.

4.1.2. Decoder

The purpose of the decoder is to interpret the fetched instruction and to send control
signals to the CPU in order to execute it. The decode stage in the rocket core is
responsible for obtaining the operands, either from the bypass sources or from the

60

register file, for it to be executed by the ALU/FPU. Additionally, the decoder looks up
a configurable table, wherein each row represents the signals required to control the
functional units corresponding to the interpreted opcode.
The rocket.scala file describes 5 out of 6 stages of the rocket core’s in-order pipeline in
the rocket class. The missing stage - the Instruction Fetch stage, is instead detailed in
frontend.scala. The configurable table of control signals looked up by the decode stage
is listed in the idecode.scala file.
In order to implement the approximate ALU part of the PACO Core, the decoder had
to be extended to include ADDAPPROX and MULAPPROX instructions. The
following steps were needed to modify the decoder:

• A control signal precise was added to every instruction in the XDecode object
in the idecode.scala file. This control signal determines if an instruction executed
precisely (represented by a ’Y’) or approximately (an ’N’) and activated the
approximation logic in the core explained in section 4.3.1.

• A boolean variable val precise = Bool() was declared in the IntCtrlSigs

class, referring to non-floating point instructions.

• The same variable was appended to the array sigs in the function decode.

• The default macro value of the variable was added to the list - decode default.

This results in the mapping of the variables with its corresponding values during the
decode stage in the decode.scala.
Other than the control signals, the decoder was modified similar to the Approximate
ALU in order to accommodate the LUT instructions. The control signals added for the
LUT instructions are alu lut sel,lut ex,lut wr,lutl and luts, which can be better
understood on reading the section 4.2.2.
These suggestions can ,therefore, be taken into account while modifying the core in the
future to add further approximate instructions.

TODO (MUST): figure: decoder control signals

4.2. LUT

4.2.1. Overview

As specified in design document Look up table hardware is intended to perform
complex computation of approximate functions, at the end aiming for considerable
speeds in computing.
The LUT hardware unit is planned to be integrated inside the pipeline as keeping it as
coprocessor is not feasible and may cause delays. For the LUT to execute inside
pipelines two major LUT instructions are designed which are LUTL for loading the
configuration data and LUTE for doing look up for values in the LUTE. The detailed
description of the instructions are provided in the design document. Since the LUT

61

hardware is a part of execution phase inside the pipeline, the LUTL and LUTE

instructions will execute the LUT hardware residing inside pipeline, if the execution of
LUT takes more than one cycle, pipeline need to be stalled. For now it is been tested
that the LUT will not take cycle delays when executed inside FPGA, hence the stalling
is postponed, unless the need arises.Problem: Is it still the case that the LUT is tested? Aren’t we in a state to give more
information about what would be the best implemented size for the LUT and how
much cycles to take are reasonable?

Architecture The LUT hardware is implemented as a blackbox Chisel, which gets
instantiated inside the generated verilog source with input and output port values. The
LUT hardware core is implemented and described in VHDL which is integrated with
Chisel blackbox receiving the inputs based on instruction from rocket and sending the
output to the rocket which at the end write back to the memory at the write back stage.
Within the hardware team the responsibilities are shared as follows:Problem: Why are responsibilities still in here? It seems to be part of the intermediate
report.

• The VHDL implmentation of the LUT core is assigned to one person.

• Chisel blackboxes and addition of LUT instructions is being assigned to two
persons

• Downloading the rocket and LIT core inside FPGA is being done by 1 person.

Problem: Why are this TODOs commented out? If they are done, please delete them.

4.2.2. Chisel Interface

Modifications The Chisel interface includes the blackbox units and the control
signals from the decoder in the rocket-rocket repository.
The modified files are rocket.scala and idecode.scala.

idecode.scala Following control signals are added in the decoder.

• alu lut sel:This control signal signify whether an instruction is LUT
instruction or non LUT instruction. When alu lut sel is true it means it is one
of the LUT instruction.

• lutl: For LUTL instruction, LUTL (lut loads) is set to true else for other
instructions it is always false.

• lut ex: Set to true iff the current instruction shall start a computation on a
LUT. This is used to distinguish between LUTE and LUTW instructions.

• lut wr: Set to true iff the current instruction shall modify input registers of the
LUT. As a LUT core can have more input registers than the CPU can transfer in
a single clock cycle, a buffer is used for all of the LUT core inputs. If the lut wr

signal is false, no buffers are written to.

62

• luts: luts is set high for LUTS instruction.

All the LUT instructions are distinguished from each other by using the above control
signals

rocket.scala The interface for LUT hardware core is implemented in rocket.scala in
the form of blackbox. The blackbox unit is named as lut core. It has following input
and output ports and communication of rocket and LUT hardware core occurs via this
blackbox and its io ports.

• data i, data2 i: Data inputs to the LUT hardware core. Up to two LUT core
inputs are updated in a single clock cycle. The selection of which input registers
to update is done via the charm i, strange i and lutsel i inputs.

• charm i Single bit input, selects whether to write to two input registers (true) or
a single one (false).

• strainge i Two bits input. Select which LUT input register(s) the CPU
register(s) are written to. For further information refer to the design document.

• data we i: Set to true to enable writing to the LUT core’s internal input
registers.

• id rst i: Reset signal denoting whether to reset the configuration data or not,
the field is present in LUTL instruction. This is 1 bit wide input signal.

• id cfg i: Configuration signal denoting whether to load the configuration data
or not,this field is present in LUTE instruction.

• id stat i: Status signal for retrieving the status of the LUT. This field is
present in the LUTS instruction. This is 1 bit wide input signal.

• id exe i: Execute signal for computation in the LUT hardware. When this
signal is high, LUTE instruction is executed allowing computation and look up on
the LUT hardware. This is 1 bit wide input signal.

• data o: Output from the LUT hardware core which is then written to the
destination register rd. This is as wide as length of the register.

• data valid o: This is one bit output signal, outputting the validity of the data.

• error o: This is one bit wide output signal. Used in case of any error sequence.

• status o: This signal outputs the status from the LUT hardware and is as wide
as length of the register.

Problem: If TODOs are done, please delete them, not just commenting them out.

63

4.2.3. Hardware Core

The LUT Hardware core is a hardware component described in VHDL that interfaces
with the black box as described in the previous section. It can be found in the
repository rocket-lut together with its testing environment.

4.2.3.1. Component Overview

TODO (MUST): update figure contents, split apart for better readability

An overview of the LUT hardware core can be seen in figure ?? which is described
below.

Inputs and Outputs The LUT core inputs at most a single instruction to be
executed per clock cycle (reset, status retrieval, configuration and execution/writing)
which is one-hot encoded via the input signals id rst i, id stat i, id cfg i and id exe i,
respectively.
As depicted in figure 11, up to two registers of arguments can be supplied for the
instruction, given by data i and data2 i, corresponding to the first (rs1) and second
(rs2) registers.
Most commands take zero or one inputs, however the execute/write instruction handles
one or two inputs. Internally the LUT core operates on three input registers, of which
one or two are updated at a time through the execute/write instruction. To select
which register(s) are written to, the signals charm i and strange i are used to select
one or two register input (charm i) and which one/two register to write to
(strange i).

States and Interaction The LUT core resides in one of the following states: RAM
configuration, chain configuration, ready, initially occupying the RAM configuration
state.
The RAM and chain configuration states each accept a single word delivered by the
configure instruction and move to an error state if execution was Requested.
During the RAM configuration state the Segment data looked up by the hardware core
is written sequentially (via ramcfg o as seen in figure ??) and after all cells were
written, the chain configuration state is assumed. This state causes the words delivered
by the configuration instruction to be forwarded via cfg o.
After a sufficient number of words were written in the chain config state, the ready
state is assumed in which only execution is permitted and an error state is assumed if
an attempt at writing further configuration data is made.
At any point in time a reset or status instruction can be requested. The former
re-initializes the core, resetting the state to RAM configuration and the RAM cell
counter to 0, effectively unsetting LUT configuration.
The status instruction delivers a single word of information via the status o output
port containing information about the state of the controller: Error flags and the total
number of configuration words utilized since the last reset instruction.

64

Once this status word contains an empty error mask and the number of utilized
registers equals the number of required registers, execute instruction may be requested.

Internal Components and Data Path The core is subdivided into five
components: The LUT controller handles interpretation of requested instructions and
the state machine as well as the first step in the data path(processor data path; if you
mean the new implementation of the LUT datapath, please use a different word express
it somehow).

Problem: Is the LUT controller part of the decode phase, so isn’t it part of the
decoder? The first step of the data path is always instruction fetch, this confuses a little
bit. Please make it more precise in which part of the pipeline the five LUT components
are implemented (this also applies for the following components).
The data path continues through the input processor selecting desired bits from an
execution instruction’s input; The address translator performs an n : m translation of
some of the picked bits yielding the LUT segment address; In the next stage this
address is used by the block RAM controller to look up the base and incline of the
addressed segment. Finally the interpolator performs a multiply-and-add stage yielding
the final result.Problem: Maybe an enumeration would be better, with further explanation, like: The
components are: 1, 2, ... and they do this and this

Delay At most steps of the data path as described above an arbitrary number of
delay cycles to be inserted if the path delay exceeds the clock period of the processor.

Problem: Same here, which data path?

Problem: So the LUT stalls dynamic depending on the needed time, do i understand it
correct? If not, please clarify it.
A single mandatory delay step is inserted during block RAM lookup which thus is fixed
to a single clock cycle delay. The other four components can operate with zero or more
delay steps.Problem: Which other four components? Do you mean the controller watches the
delay for the other components? Then please name the controller as the one component
here which is not included in the phrase ”other four”.

4.2.3.2. Architecture Parameters
CLARIFY: The individual components are described in detail in the respective code
files. Discussing this here would introduce duplication of text.

Solution: A splitting in general overview and implementation would be the best. The
general overview was already done in the data path paragraph (if some information is
added). If you do that, you can delete the empty paragraphs here. But please make
sure to name the components the same way. E.g. Input decoder != Input processor

4.2.3.3. LUT controller

65

4.2.3.4. Input decoder

4.2.3.5. Address translator

4.2.3.6. Lookup Table

4.2.3.7. Interpolator

4.2.3.8. Testing Testing of the LUT Hardware core is divided into three paradigms:
VHDL test benches simulate individual components and offer a means of manually
debugging and testing them. Hardware tests are synthesizable top-level modules
interfacing a single component via a UART transceiver and work in conjunction with a
python script that performs automatic testing. Finally, integration of the entire LUT
Hardware core is tested with a system test.

Test Benches VHDL test benches exist for each of the five components of the
LUT hardware core: Input processor, address translation, RAM control, interpolation
and the LUT controller.

Problem: Please use the same order as above and the same names
Each of these test benches is located in a file prefixed with tb . While these test
benches can be used to debug and test components manually, they can not provide a
guarantee that the synthesized circuit is executed correctly when instantiated on an
FPGA.

Hardware Tests Hardware tests start off where test VHDL benches end:
Instantiating a single component on an FPGA and interfacing it via UART, hardware
tests deliver a definitive answer to whether or not a circuit is operational.
Analogously to test benches, hardware tests are prefixed with ht . Each of the tests
consist of a top-level VHDL module (extension .vhd), a python class interfacing with
the top-level module (appropriate .py file in the htlib directory) and a test script
(extension .py).
To execute a hardware test, simply implement the corresponding top-level module,
download the bitstream onto an FPGA and execute the respective script, adjusting the
UART port if necessary.
To allow for automatic testing using hardware tests, a simulated implementation of
each component as well as the entire hardware unit was performed in the python
language. These scripts provide reference input-output pairs for each of the hardware
tests, which are then checked against computations performed on the respective
hardware component.
Hardware tests are available for the address translator, input processor, interpolator

and the LUT controller as well as the entire LUT Hardware core. Due to the trivial
nature of the RAM controller implementation, no hardware test was written for it.Problem: Think of same names and order as above.

66

System Test Complementing (and building on) the hardware tests, a single system
test was written which tests the correct configuration and computation of Lookup
tables by interfacing with a LUT core embedded in the RISC-V processor pipeline.
This is achieved through a RISC-V program located in system-test that utilizes
input-output pairs provided by the python simulation and compares them with results
of LUT instructions executed on the RISC-V instantiation.

4.2.3.9. Configuration Bitstream The configuration bitstream for each LUT consists
of three blocks: RAM data, Input decoder crosspoints (connection plane) and PLA
crosspoints (AND and OR planes). For a graphical overview, please refer to figure 12.
Each block is made of a sequence of bitvectors that may or may not exceed the length
of a word of the RISC-V processor.
Each bitvector is expressed with as many words as they are required to cover all bits of
the bitvector, remaining bits are left as padding.
Example: Let the RISC-V word size be 64 bit and have the PLA use 80 interconnects
between the AND and OR planes. Then each column in the OR plane is a 80 bit
vector. Thus each of these is expressed as two configuration words with bits 80 through
127 being don’t cares.

Ordering and Alignment Words within a bitvector are ordered lowest word first
while the bytes within each individual word are orderd in the processor’s endianness.
As the RAM block is written front-to-back and the remainder is part of a daisy chain,
the words making up the Input decoder and PLA crosspoints must be written in
reverse order, thus if the blocks have n RAM words, m input decoder words and o
PLA words, the bitstream is stored as:
RAM1, RAM2, ..., RAMn, PLAo, PLAo−1, ..., PLA1, IDECm, IDECm−1, ..., IDEC1.

RAM Bitvectors The RAM consists of 2SEGMENT BITS bitvectors (one for each
addressed segment) of BASE BITS + INCLINE BITS bits. The lowest
INCLINE BITS bits are the two’s complement representation of the segment’s incline
and the remaining BASE BITS bits are the two’s compliment representation of the
segment’s base value.

Input Crosspoints The input decoder is configured with one bitvector for each
selector and interpolation bit, each being three times as wide as words in the processor
(192 bits). Each bit in the bitvector represents one crosspoint in the input selection
matrix. Thus it should be a one-hot encoding of the bit of the input words to be used
as the respective bit. The lowest bit of the bitvector represents the lowest bit of the
first input word (rs1), incrementing in the obvious manner.
The first INTERPOLATION BITS bitvectors define the crosspoints for the
interpolator and the remaining SELECTOR BITS bitvectors handle the selector bits,
in both instances starting with the lowest significant bit.

67

PLA Crosspoints The input I to the PLA is the selector bits as relayed by the
input decoder expanded by its complement: I = s1s2 · · · sn · s1s2 · · · sn, s1 being the
lowest significant bit of the selector.
The configuration block is split in two segments: AND and OR plane bitvectors.
Each bitvector in the AND plane holds the bits for the crosspoints of one interconnect
between the AND and OR planes: It is AND-combined with the input I and the
AND-reduction of this combination is fed into the OR plane, thus it has
2 · SEGMENT BITS bits.
The lowest significant bit of each bitvector is the one AND combined with the lowest
significant bit of the input I, and so on.
The OR plane bitvectors each combine all interconnects in a similar fashion as the
AND plane combines all input bits: The interconnect bits are AND-combined with the
bitvector and OR-reduced, making up the output bit, thus each bitvector has
PLA INTERCONNECTS bits.
Formally, the following formula express the bits and bitvectors used in the PLA:

n := SELECTOR BITS

m := PLA INTERCONNECTS

o := SEGMENT BITS

s :=
n∑

i=1

2i−1si (selector (input))

a :=
m∑
i=1

2i−1ai (address (output))

c :=
o∑

i=1

2i−1ci (interconnects)

I = (i1, i2, ..., i2n) = (s1, s2, ..., sn, s1, s2, ..., sn) (expanded input)

cj :=
2n∏
k=1

ik ·ANDj,k

aj ≡
o∑

k=1

ckORj,k (mod 2)

Here, ANDj,k (ORj,k) represents the k-th bit of the j-th AND (OR) bitvector. The
resulting configuration block then consists of these bitvectors:

AND1, AND2, ..., ANDm, OR1, OR2, ..., ORo

4.2.4. Design Space

CLARIFY: should this go into an evaluation document?
Solution: The complete design decisions and tests yes, but a general overview about

68

what is the problem with design space, what options and what influences it would be
good. But not that detailed like the evaluation document would be, so maybe leave out
the paragraphs exploration and conclusion and reference instead to the evaluation
document

4.2.4.1. Parameters, metrics

4.2.4.2. Exploration

4.2.4.3. Conclusion

4.3. Approximate ALU

4.3.1. Overview

The design document describes an approach towards a Scalable Approximate ALU
that combines circuitry for clock gating and for scaling the approximation level. The
latter has not deviated in its implementation however the former has changed
considerably and has been redesigned and adjusted during the implementation phase.
Clock gating certain bits in the ALU input registers require accessing and
manipulating write-enable signals of single flip-flops. This level of granularity is not
supported by the Chisel language. A work-around was designed by introducing two
extra registers to store the operands of each arithmetic operation until the next cycle.
If the next instruction is approximate, MSBs of the new operands are appended to
LSBs of the previous ones. This means that LSBs maintain the same value in two
consecutive cycles, hence the logic responsible for operating on them does not have any
switching activity or consumes energy. 7 Multiplexers were also added to achieve 7
approximation levels. This design introduced a lot of overhead that would consume
more energy than it would save. In addition, the complexity of the design introduced
hazards that caused the precise operation of the pipeline to malfunction.
The current implementation of scalable approximate ALU provides a platform which
can achieve different levels of approximation. This would allow specialists from
different domains to test applications with different level of approximation.

Approximating operands The idea behind the scalable ALU is to approximate
operands of certain arithmetic operations before feeding them to the ALU or the
Multiplier unit. Approximation of operands is scalable by different levels according to
6 approximation bits present in the instruction format of approximate instructions.
As stated above in section 4.3.1, the aim of this strategy is to create a platform to
serve as a multi-level approximate processor. This is done by neglecting number of
LSBs5 from each operand. The desired quality of result must be specified by the

5The least significant bit is the lowest bit in a series of numbers in binary.

69

programmer in the code using approx decorators. For more details regarding approx
decorators refer to the compiler section 3.

4.3.2. Original code base

rocket.scala The Rocket chip CPU has a single-issue, in-order, five-stage-pipeline.
Figure 13 shows a schematic of this design. This figure only shows details of the the
decode and execute phase since only these are relevant for the modification to come.
Every instruction has at most two input registers (rs, rt) as well as one result register
(rd). The register’s content is loaded from a 32 entry registerfile (Regfile) and these are
sent to three functional units: ALU, Integer Divide (IDIV), and integer multiplier
(IMUL). The ALU takes one cycle to complete an operation and the other two take
several cycles. All outputs of the functional units are connected to a bypass network
which allows new instructions to take their inputs from later phases of the pipeline,
instead of the registerfile, in case of data dependency between consecutive instructions.
A more detailed description of Rocket can be found in the links of the Appendix A.7.
The controlpath for the pipeline can be found in the file rocket.scala. The ALU can be

found in the file dpath alu.scala and the IMUL functional unit can be found in the
file multiplier.scala, which contains the IDIV as well.

4.3.3. Modified Code Base

Changes to the ALU The components modified for the ALU are listed below:

1. idecode.scala: The changes to the ALU requires a modification to the decoder. In
order to execute the approximate instructions, a control signal - precise, has
been added in the decoder to all the instructions. When the precise control
signal is set to true (symbolised as ’Y’), the instruction is executed precisely,
otherwise it is executed with scalable approximation 4.3.1.
The instructions ADD and SUB are executed approximately and are thus
conveniently named ADD APPROX and SUB APPROX. These instructions have been
added to the idecode.scala file. All the control signals of the ADD APPROX

instruction remains the same as the ADD instruction except for the precise
signal(represented with an ’N’). This signal is set to false, activating the
approximation logic of the core. The SUB APPROX instruction has also been
added similarly. For more details on how to extend the decoder, please read
section 4.1.2.

2. rocket.scala: This file describes the implementation of the pipeline stages of the
rocket-core. The operands are approximated before being sent to the ALU for
execution (read section 4.3.1).The approximation logic is implemented in the
execute stage of the ALU as shown in figure 13. The approximate logic is
implemented in the class - Rocket. All the registers and the wires used in every
pipeline stage is defined in this class. The following changes are made to the
rocket.scala to incorporate the approximation logic:

70

• Approximation Determination: In order to determine if an instruction
needs to executed precisely or approximately, the control signal identifying
this is obtained in the wire ex ctrl.precise. Whereas, the instruction to be
executed is stored in the ex reg inst register. Bits 26 to 31 of this
instruction identify the amount of approximation. This approximation value
is then gathered in a bundle of wires named, ex app bits before being sent
to the approximation logic. For more information on the instruction format,
refer to the Design Document.
Solution (workaround): Refer this to a sentence and place it in the footer

• Approximation logic: As seen from the figure 13, the approximation logic is
implemented in the execute stage of the pipeline. Since the operands are
approximated before operation, following lines of code explain the relevant
changes. Solution (workaround): Instead, explain an if block of the code
line by line. Say, line 1 what it means, line 2 so on. Not the whole code.
Just one block

val ex_app_bits = ex_reg_inst(31,26)

when (!ex_ctrl.precise && (ex_app_bits.toUInt === 63)){

alu.io.in1 := Cat(ex_op1(xLen-1,2),Bits(0,2))

alu.io.in2 := Cat(ex_op2(xLen-1,2),Bits(0,2))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 62)){

alu.io.in1 := Cat(ex_op1(xLen-1,4),Bits(0,4))

alu.io.in2 := Cat(ex_op2(xLen-1,4),Bits(0,4))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 60)){

alu.io.in1 := Cat(ex_op1(xLen-1,7),Bits(0,7))

alu.io.in2 := Cat(ex_op2(xLen-1,7),Bits(0,7))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 56)){

alu.io.in1 := Cat(ex_op1(xLen-1,10),Bits(0,10))

alu.io.in2 := Cat(ex_op2(xLen-1,10),Bits(0,10))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 48)){

alu.io.in1 := Cat(ex_op1(xLen-1,15),Bits(0,15))

alu.io.in2 := Cat(ex_op2(xLen-1,15),Bits(0,15))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 32)){

alu.io.in1 := Cat(ex_op1(xLen-1,20),Bits(0,20))

alu.io.in2 := Cat(ex_op2(xLen-1,20),Bits(0,20))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 0)){

alu.io.in1 := Cat(ex_op1(xLen-1,26),Bits(0,26))

alu.io.in2 := Cat(ex_op2(xLen-1,26),Bits(0,26))

}

.otherwise {

alu.io.in1 := ex_op1.toUInt

71

alu.io.in2 := ex_op2.toUInt

}

In the above code snippet, alu.io.in1 and alu.io.in2 are the operands supplied to
the ALU and these are approximated. The logic checks if the precise signal is set to
false and then truncates the Least Significant Bits of the operands, replacing them
with 0’s based on the approximation bits supplied.

Changes to the Multiplier The multiplier has been modified in a similar way to
the ALU for approximation. The components listed below were modified:

1. idecode.scala: Implementing the MUL APPROX instruction follows the same steps as
with the ADD APPROX instruction. The control signals of the MUL APPROX is similar
to that of the MUL instruction except for the precise signal being set to false.

2. rocket.scala: Similar to the approximate ALU, approximation of the multiplier
requires the operands to be approximated before execution. The following code
snippet describes the changes:

when (!ex_ctrl.precise && (ex_app_bits.toUInt === 63)){

div.io.req.bits.in1 := Cat(ex_rs(0)(xLen-1,2),UInt(0,2))

div.io.req.bits.in2 := Cat(ex_rs(1)(xLen-1,2),UInt(0,2))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 62)){

div.io.req.bits.in1 := Cat(ex_rs(0)(xLen-1,4),UInt(0,4))

div.io.req.bits.in2 := Cat(ex_rs(1)(xLen-1,4),UInt(0,4))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 60)){

div.io.req.bits.in1 := Cat(ex_rs(0)(xLen-1,7),UInt(0,7))

div.io.req.bits.in2 := Cat(ex_rs(1)(xLen-1,7),UInt(0,7))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 56)){

div.io.req.bits.in1 := Cat(ex_rs(0)(xLen-1,10),UInt(0,10))

div.io.req.bits.in2 := Cat(ex_rs(1)(xLen-1,10),UInt(0,10))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 48)){

div.io.req.bits.in1 := Cat(ex_rs(0)(xLen-1,15),UInt(0,15))

div.io.req.bits.in2 := Cat(ex_rs(1)(xLen-1,15),UInt(0,15))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 32)){

div.io.req.bits.in1 := Cat(ex_rs(0)(xLen-1,20),UInt(0,20))

div.io.req.bits.in2 := Cat(ex_rs(1)(xLen-1,20),UInt(0,20))

}

.elsewhen(!ex_ctrl.precise && (ex_app_bits.toUInt === 0)){

div.io.req.bits.in1 := Cat(ex_rs(0)(xLen-1,26),UInt(0,26))

div.io.req.bits.in2 := Cat(ex_rs(1)(xLen-1,26),UInt(0,26))

}

.otherwise {

div.io.req.bits.in1 := ex_rs(0)

div.io.req.bits.in2 := ex_rs(1)

}

72

In the above code snippet div.io.req.bits.in1 and div.io.req.bits.in2 are the operands fed
to the multiplier. The rest logic is implemeted the same way as the approximate ALU.

4.4. Power estimation

TODO (MUST): state the objective

The energy consumption of the PACO core has to be estimated in order to compare its
savings over typical precise cores. Instructions such as approximate ADD and
MULTIPLY and their precise counterparts are compared on the original core. This
data can be obtained using FPGA or ASIC tools for power estimation. Xilinx FPGA
tools are available and are easy to use however the power estimation is that of an
FPGA implementation of the core, which differs from the performance an ASIC Chip.
ASIC tools used by UC Berkley are not open source or freely available.

TODO (MUST): discuss difficulty

4.4.1. Xilinx Power Analyzer

TODO (MUST): describe the tool

Xilinx Power Analyzer(xpa) is a tool available with Xilinx ISE to obtain the power
results post placement and routing stages. It requires net lists and saif files as input.
Saif files are generated after simulation and includes switching activity for estimation
of dynamic power consumption.

TODO (MUST): state experiments conducted

The FPGA Toolchain was used to obtain static and dynamic power estimates. The
following steps were followed for the power results:

• A dummy design of an Adder was synthesized, placed and routed using the
Xilinx ISE tool. These steps produced net lists in the form of .ncd files.

• A testbench with varying inputs was run using isim and an .saif file was
generated. This file was generated with the command

saif open

in the isim console before the start of the simulation and

saif close

after the end of simulation.

• These steps record the switching activity from the runs in the saif file.

• The .ncd and the .saif have to be input to the xpa for estimating the static and
the dynamic power. This can be done by opening X power Analyzer from the
tools tab in the ise.

73

TODO (MUST): state results

The above design of the 32-bit Adder yielded the following estimates:

• For a testbench of multiple input pairs spanning 6 cycles:

– static power consumption was 3.423

– dynamic power consumption was 0.016

• For a testbench of multiple input pairs spanning 1000 cycles:

– static power consumption was 3.423

– dynamic power consumption was 0.040

The reason for the static power consumption being considerably larger than the
dynamic power consumption could be due to the adder being small compared to the
overall size of the FPGA.

4.4.2. Synopsis Tool

TODO (MUST): describe the tool

Another option would be to use the Synopsis Tools in order to synthesize the estimate
the power with the ASIC tool flow. This suite consists of several tools such as:

• Synopsis’ Verilog Compiler and Simulator (VCS) is specifically designed to
simulate and debug ASIC designs. VCS compiles the Verilog source into an
object source or C source files. The C compiler is invoked to generate the
simulation executable. This executable is used to simulate the designs.

• Synopsis Design Compiler: This tool is used to synthesize the design and it
transforms RTL into gate level net lists.

• Synopsis Formality: This tool is used to verify that the RTL and gate level
models match. VCS is used once again to simulate the gate level model.

• Synopsis IC compiler: Once gate level netlist is obtained IC Compiler is used for
placement and routing of the design. VCS is used to simulate the final gate level
netlist.

• Prime Time PX: This tool takes the gate level netlist and switching activity from
the simulation and provides accurate numbers on power consumption.

No experiments have been conducted so far with the Synopsis tools as they are not yet
available. Some tools may be obtained in the near future. The
next step would be to obtain the missing ones or find a work around without using them.

TODO (MUST): state experiments conducted

74

TODO (MUST): state results

TODO (MUST): add evaluation of both alu an lut using different applications

TODO (MUST): all details regarding evaluation and performance metrics

75

lut_core.vhd

bram_controller.vhd

pipeline_i
cfg_i

pipeline_o
cfg_o

rst,clk

ramcfg_i

sel, inter

addr

cfg_mode

addr, data,
we

addr
data_in
we

data_out

clk

base,
incline

RAM

address_translator.vhd

pipeline_i
cfg_i

pipeline_o
cfg_o

rst,clk

C_CFG_ADDRESS_TRANSLATOR_REGISTER_COUNT

C_ADDRESS_TRANSLATOR_DELAY

input_processor.vhd

pipeline_i
cfg_i

pipeline_o
cfg_o

rst,clk

C_CFG_INPUT_DECODER_REGISTER_COUNT

C_INPUT_DECODER_DELAY

interpolator.vhd

pipeline_i
cfg_i

pipeline_o
cfg_o

rst,clk C_INTERPOLATOR_DELAY

lut_controller.vhd

pipeline_o

cfg_o

id_rst_i

C_CONTROLLER_DELAY

id_stat_i
id_cfg_i
id_exe_i

data_i
FSM

clk

rst
&

ready

rst

ramcfg_o

error_o
status_o

input
handler

id_rst_i
id_stat_i
id_cfg_i
id_exe_i

data_i

clk

data2_i

error_o
status_o

data_o
data_valid_o

charm_i
strange_i

data_we_i

Figure 10: Overview of the LUT Hardware core. Each box shows a single component
found in a single VHDL file. Connections of reset and clock signals are im-
plemented trivially and thus not shown here. Signals pipeline and cfg are
connected in a daisy-chain manner and the ramcfg i input of the bram con-
troller is connected with the ramcfg o output of the lut controller.

76

sel[0]

data path

charm/strange
decoder

data1_i
data2_i

input 1
input 2
input 3

charm_i
strange_i

data_we_i

controller

d q
en

d q
en

d q
en

sel[0..2]

sel[2]

sel[1]

Figure 11: Processing of input data into the LUT core. data1 i and data2 i are fed via
an instruction and are used to update internal input registers, driving the
data path inputs.

77

RAM

OR plane

AND plane

0 63
word 0

0 63
word 1

incline0 base0
47 padding15 00

0 63
word 2

0 63
word 2J-1

incline1 baseJ-1
47 padding15 00

0 63
word 1

AND row1 padding170

0 63
word 0

AND row0 padding170

0 63
word L-1

AND rowL-1 padding170

0 63
word L-2

AND rowL-2 padding170

0 63
word 3M-1

selMask M-1 195128

0 63
word 3M-2

selMask M-1 12764

0 63
word 1

selMask 0 1270

0 63
word 0

selMask 0 630

0 63
word 4K-1

OR colK-1 padding203196

0 63
word 4K-1

OR colK-1
195128

0 63
word 1

OR col0 12764

0 63
word 0

OR col0 630

connection
plane selector

inter-
polator

0 63
word 3N-1

interMask N-1 195128

0 63
word 3N-2

interMask N-1 12764

0 63
word 1

interMask 0 1270

0 63
word 0

interMask 0 630

first word

last word

bitstream

(a) Overview of bitstream components. The order of configuration words is to be read left-to-
right, top-to-bottom.

A
N

D

0 1 M-1 M M+1 2M-1
AND row0

A
N

D

0 1 M-1 M M+1 2M-1
AND row1

A
N

D

0 1 M-1 M M+1 2M-1
AND row203

OR

0
1

2
0

3

OR

0
1

2
0

3

OR

0
1

2
0

3

address
(to RAM)

 K

OR col0 OR colK-1

OR col1

rs1

rs2

rs3

64

64

64

192

rs1,0
rs1,1
rs1,2
...

rs3,2

selMask0

OR

0
1

2
1

9
1

OR

0
1

2
1

9
1

OR

0
1

2
1

9
1

OR

0
1

2
1

9
1

OR

0
1

2
1

9
1

OR

0
1

2
1

9
1

selMask1

selMaskM-1

interMask0

interMask1

interMaskN-1

word 0

word 3(N+M)-1

N

interpolator
(to MAD)

word 0

word L-1

word 0

word 4K-1

(b) Structural depiction of the LUT data path excluding the interpolator and RAM, showing the
mapping of bitstream data to crosspoints in the connection plane and PLA. Word indices
are relative to the respective bitstream component, crosspoints are labeled with the bit index
of the value corresponding to the group of crosspoints encompassed with a dotted frame.
Note that the interconnection plane combines both the selector and interpolator bitstream
components.

Figure 12: Depiction of the LUT Hardware core bitstream. Values shown are correspond-
ing to a LUT core configuration with K segment bits, J = 2K segments, L
PLA interconnects, M = 9 selector bits and N interpolation bits. Each
segment is represented by 16 incline bits and 48 base bits.78

F
e

tc
h

D
e

c
o

d
e

rs rt

Decode,
Arbitration,

Stall
Detection

Logic

E
x

e
c

u
teALU IDIV

BYPASS

Sign
Extend

imm

M
e

m
o

ry
C

o
m

m
it

IMUL

Ctrl
Regs

(Read)

rs

Queue

control

mode

ra0

Regf le
(Read)

ra1

en

Figure 13: Rocket core pipeline stages

79

Appendices

A. External resources

• Design Document

TODO (MUST): add links to external material, website link

TODO (MUST): download this material (if appropriate), store it in /mat and refer
to it as well

A.1. QEMU

Useful material for understanding QEMU can be found in these external resources:

• The official manual in form of a wiki: http://www.qemu.org/Manual

• Additional information about the internals of QEMU:
https://qemu.weilnetz.de/qemu-tech.html

A.2. Clang/LLVM

Useful material for understanding LLVM can be found in these external resources:

• The official manual in form of a wiki: http://llvm.org/docs/

• Documentation on intrinsic functions:
http://llvm.org/docs/LangRef.html#intrinsic-functions

• Additional information on data types can be found here:
http://llvm.org/docs/LangRef.html#t-firstclass

• Additional information about adding a backend can be found here:
http://llvm.org/docs/WritingAnLLVMBackend.html

• Additional information about adding intrinsic functions can be found here:
http://llvm.org/docs/ExtendingLLVM.html

• Additional information about writing test cases can be found here:
http://llvm.org/docs/TestingGuide.html

A.3. GNU/Binutils

A.4. Chisel

• The official homepage of Chisel: https://chisel.eecs.berkeley.edu/

• Documentation of Chisel:
https://chisel.eecs.berkeley.edu/documentation.html

80

http://www.qemu.org/Manual
https://qemu.weilnetz.de/qemu-tech.html
http://llvm.org/docs/
http://llvm.org/docs/LangRef.html#intrinsic-functions
http://llvm.org/docs/LangRef.html#t-firstclass
http://llvm.org/docs/WritingAnLLVMBackend.html
http://llvm.org/docs/ExtendingLLVM.html
http://llvm.org/docs/TestingGuide.html
https://chisel.eecs.berkeley.edu/
https://chisel.eecs.berkeley.edu/documentation.html

A.5. Scala

• Official Scala Website http://www.scala-lang.org/

• The official documentation of Scala:
http://www.scala-lang.org/documentation/

• Scala School : https://twitter.github.io/scala_school/

A.6. RISC-V

A.7. Rocket Chip

A.8. Rocket SoC

81

http://www.scala-lang.org/
http://www.scala-lang.org/documentation/
https://twitter.github.io/scala_school/

List of Tables

1. PACO hardware component overview: Short descriptions of major hard-
ware components in the PACO approximate computing core, as well as the
FPGA interface needed to run applications it. The last column contains
references to more detailed descriptions of the components. 9

2. PACO software component overview: Short descriptions of major com-
ponents needed to compile/generate software for the PACO approximate
computing core. The last column contains references to more detailed
descriptions of those components. 10

3. Table containing the original repositories without any modfication and
the place where they should be checked out. 29

List of Figures

1. An overview over the workflow in the PACO tools. On the left side are
the Hardware descriptions and how they can be tranformed into three
different platform. The right side shows the workflow to create a program
to be run on these platforms . 21

2. A directory tree of the most important files and directories with a short
description on their purpose. Git repositories are marked with a git sym-
bol, folders with a folder symbol, and build or installation folders have a
gear symbol. Every directory surrounded by a solid white box is entirely
written for PACO, every directory surrounded by a grey box contains
modified code from the original repositories, and every other directory is
untouched. 28

3. Toolflow for generating executable utilizing the PACO language exten-
sions and hardware cores. 42

4. Example of PACO tree for approximate computation analysis 47
5. Examples of segmentation strategies. Each group shows the designated

domain to be segmentated and the segment intervals placed. Note that
for error minimization, an approximation strategy must also be specified. 54

6. Examples of approximation strategies. The target function is shown in
black, being approximated by an affine linear function (blue). 55

7. Overview of the importand source code files of the LUT Compiler Tool. . 56
8. Coordinate systems used in the LUT Compiler Tool for an examplary

translation of the highlighted input domain. In this example the segment
space is 215 value wide with an offset of 7168. With 2 selector bits the
segment space is subdivided into 16 principal segments. They are reduced
to 4 segments (2 segment bits). Dotted lines in the hardware space indi-
cate individual evaluable points which result from a single interpolation
bit. 57

82

9. Overview of the PACO CPU core. The Rocket Chip implementation
of the RISC-V CPU core is extended with an approximate ALU and a
Lookup-Table (LUT). The LUT core itself is written in VHDL while all
of the remainder is described in Chisel. 60

10. Overview of the LUT Hardware core. Each box shows a single component
found in a single VHDL file. Connections of reset and clock signals are
implemented trivially and thus not shown here. Signals pipeline and cfg
are connected in a daisy-chain manner and the ramcfg i input of the bram
controller is connected with the ramcfg o output of the lut controller. . . 76

11. Processing of input data into the LUT core. data1 i and data2 i are fed
via an instruction and are used to update internal input registers, driving
the data path inputs. 77

12. Depiction of the LUT Hardware core bitstream. Values shown are cor-
responding to a LUT core configuration with K segment bits, J = 2K

segments, L PLA interconnects, M = 9 selector bits and N interpolation
bits. Each segment is represented by 16 incline bits and 48 base bits. . . . 78

13. Rocket core pipeline stages . 79

Special files

env.sh Bash script to be sourced before the PACO environment can be used. Sets up.
7, 11, 30, 31

qemu/images/bbl Default bootloader image for use with emulating RISC-V in
QEMU.. 32, 35

qemu/images/rootfs.ext2 Default root file system for use with emulating RISC-V in
QEMU.. 31, 32, 35

qemu/images/vmlinux Default kernel image for use with emulating RISC-V in
QEMU.. 31, 35

qemu/target-riscv/instmap.h Instruction decode header for the RISC-V QEMU
target.. 36, 37

qemu/target-riscv/translate.c Complete QEMU intermediate code generation from
RISC-V instructions.. 36, 37

qemu/tcg/README Reference for the QEMU intermediate code (TCG).. 36

riscv-tools . 7, 11, 12, 40

riscv-tools-src/build.sh Bash script building RISC-V toolchains fesvr, isa-sim,
gnu-toolchain, pk and riscv-tests.. 30

riscv-tools-src/riscv-gnu-toolchain/binutils/gas/config/tc-riscv.c . 51

83

riscv-tools-src/riscv-gnu-toolchain/binutils/opcodes/riscv-dis.c . 52

riscv-tools-src/riscv-gnu-toolchain/binutils/opcodes/riscv-opc.c . 51

riscv-tools-src/riscv-llvm/include/llvm/InitializePasses.h . 50

riscv-tools-src/riscv-llvm/include/llvm/IR/IntrinsicsRISCV.td . 49

riscv-tools-src/riscv-llvm/include/llvm/Transforms/PACO/Paco.h . 50

riscv-tools-src/riscv-llvm/lib/Target/PowerPC/AsmParser/RISCVAsmParser.cpp .
49

riscv-tools-src/riscv-llvm/lib/Target/RISCV/RISCVInstrFormats.td . 49

riscv-tools-src/riscv-llvm/lib/Target/RISCV/RISCVInstrInfo.td . 49

riscv-tools-src/riscv-llvm/lib/Target/RISCV/RISCVOperands.td . 49

riscv-tools-src/riscv-llvm/lib/Transforms/PACO/LutTranslate.cpp . 50

riscv-tools-src/riscv-llvm/lib/Transforms/PACO/paco.cpp . 50

riscv-tools-src/riscv-llvm/riscv-clang/include/clang/AST/Decl.h . 44

riscv-tools-src/riscv-llvm/riscv-clang/include/clang/AST/Expr.h . 47

riscv-tools-src/riscv-llvm/riscv-clang/include/clang/Basic/DiagnosticParseKinds.td
. 43

riscv-tools-src/riscv-llvm/riscv-clang/include/clang/Basic/DiagnosticSemaKinds.td
. 43

riscv-tools-src/riscv-llvm/riscv-clang/include/clang/Basic/LangOptions.def . 43

riscv-tools-src/riscv-llvm/riscv-clang/include/clang/Basic/PACO.h . 43

riscv-tools-src/riscv-llvm/riscv-clang/include/clang/Basic/TokenKinds.def . 43, 45

riscv-tools-src/riscv-llvm/riscv-clang/include/clang/Sema/Sema.h . 45

riscv-tools-src/riscv-llvm/riscv-clang/include/clang/Sema/SemaExpr.cpp . 47

riscv-tools-src/riscv-llvm/riscv-clang/lib/CodeGen/CGExpr.cpp . 48

riscv-tools-src/riscv-llvm/riscv-clang/lib/CodeGen/CGExprScalar.cpp . 48

riscv-tools-src/riscv-llvm/riscv-clang/lib/CodeGen/CodeGenFunction.cpp . 48

riscv-tools-src/riscv-llvm/riscv-clang/lib/Parse/ParseDecl.cpp . 43, 44

riscv-tools-src/riscv-llvm/riscv-clang/lib/Parse/ParseExpr.cpp . 46

84

riscv-tools-src/riscv-llvm/riscv-clang/lib/Parse/ParsePragma.cpp . 45

riscv-tools-src/riscv-llvm/riscv-clang/lib/Parse/ParsePragma.h . 45

riscv-tools-src/riscv-llvm/riscv-clang/lib/Parse/Parser.cpp . 45

riscv-tools-src/riscv-llvm/riscv-clang/lib/Parse/ParseStmt.cpp . 45

riscv-tools-src/riscv-llvm/riscv-clang/lib/Sema/SemaDecl.cpp . 44

riscv-tools-src/riscv-llvm/riscv-clang/test/PACO/ApproxGeneralAndALU.cpp . 48

riscv-tools-src/riscv-llvm/riscv-clang/test/PACO/ApproxLUT.cpp . 48

riscv-tools-src/riscv-llvm/test/CodeGen/RISCV . 49

riscv-tools-src/riscv-llvm/tools/llc/llc.cpp . 50

riscv-tools-src/riscv-lut-compiler . 56

riscv-tools-src/riscv-lut-compiler/arch-config.h . 57

riscv-tools-src/riscv-lut-compiler/error.h . 58

riscv-tools-src/riscv-lut-compiler/make.incl . 56

riscv-tools-src/riscv-lut-compiler/riscv-lut-compiler.cpp . 56

riscv-tools-src/riscv-lut-compiler/strategies . 56

riscv-tools-src/riscv-lut-compiler/strategies decl.h . 56

riscv-tools-src/riscv-lut-compiler/tests . 59

riscv-tools-src/riscv-opcodes/opcodes . 51

riscv-tools-src/riscv-opcodes/parse-opcodes . 51

riscv-tools-src/riscv-tests/isa/ . 17

riscv-tools-src/riscv-tests/isa/macros/scalar/test macros appr scalar.h . 34

riscv-tools-src/riscv-tests/isa/rv64ui/add approx.S . 33

riscv-tools-src/riscv-tests/isa/rv64ui/Makefrag . 34

riscv-tools/bin/riscv-uart-flash . 19, 39

riscv-tools/py . 31

riscv-tools/riscv64-unknown-elf/share/riscv-tests/isa/ . 17

rocket-chip/ . 17, 34

85

rocket-chip/emulator/ . 17

rocket-chip/emulator/output/ . 17

rocket-chip/fsim/generated-src/Top.PACOConfigFPU.v . 30

rocket-chip/fsim/Makefile . 30, 41

rocket-chip/rocket/src/main/scala/decode.scala . 61

rocket-chip/rocket/src/main/scala/dpath alu.scala . 70

rocket-chip/rocket/src/main/scala/frontend.scala . 61

rocket-chip/rocket/src/main/scala/idecode.scala . 61, 62, 70, 72

rocket-chip/rocket/src/main/scala/multiplier.scala . 70

rocket-chip/rocket/src/main/scala/rocket.scala . 61, 62, 70, 72

rocket-soc/rocket soc/fw/boot/linuxbuild/bin/bootimage.hex . 31

rocket-soc/rocket soc/fw/boot/src/ . 30

rocket-soc/rocket soc/fw/boot/src/main.c . 30

rocket-soc/rocket soc/fw/boot/src/trap.c . 30

rocket-soc/rocket soc/fw images/ . 31

rocket-soc/rocket soc/lib . 19, 40

rocket-soc/rocket soc/lib/templates/ . 13

rocket-soc/rocket soc/lib/templates/lut-application . 52

rocket-soc/rocket soc/prj/rocket soc.bit . 13

rocket-soc/rocket soc/prj/rocket soc.xise . 13

rocket-soc/rocket soc/rocket-lut/htlib . 66

rocket-soc/rocket soc/rocket-lut/system-test . 67

rocket-soc/rocket soc/rocketlib/misc/nasti uart.vhd . 39

rocket-soc/rocket soc/rocketlib/Top.GnssConfigNoFPU.v . 7, 12, 30, 41

86

Repositories

qemu Git repository qemu. 29, 35

riscv-tools-src Git repository riscv-tools. 29, 30, 33

riscv-tools-src/riscv-fesvr Git repository riscv-tools-fesvr. 29

riscv-tools-src/riscv-gnu-toolchain Git repository riscv-tools-gnu-toolchain. 29,
51

riscv-tools-src/riscv-isa-sim Git repository riscv-tools-isa-sim. 29

riscv-tools-src/riscv-llvm Git repository riscv-tools-llvm. 29, 42, 48

riscv-tools-src/riscv-llvm/tools/clang Git repository riscv-tools-llvm-clang. 29,
42

riscv-tools-src/riscv-opcodes Git repository riscv-tools-opcodes. 29, 51

riscv-tools-src/riscv-pk Git repository riscv-tools-pk. 29

riscv-tools-src/riscv-tests Git repository riscv-tools-tests. 29, 31, 33, 34

riscv-tools-src/riscv-tests/env Git repository riscv-tools-tests-env. 29

rocket-chip Git repository rocket. 29, 34

rocket-chip/chisel Git repository rocket-chisel. 29

rocket-chip/context-dependent-environments Git repository
rocket-context-dependent-environments. 29

rocket-chip/dramsim2 Git repository rocket-dramsim2. 29

rocket-chip/groundtest Git repository rocket-groundtest. 29

rocket-chip/hardfloat Git repository rocket-hardfloat. 29

rocket-chip/junctions Git repository rocket-junctions. 29

rocket-chip/rocket Git repository rocket-rocket. 29, 30, 62

rocket-chip/torture Git repository rocket-torture. 29

rocket-chip/uncore Git repository rocket-uncore. 29

rocket-chip/zscale Git repository rocket-zscale. 29

rocket-soc Git repository rocket-soc. 29, 40

rocket-soc/rocket soc/rocket-lut Git repository rocket-lut. 64

87

	Workflow:
	User Guide
	Introduction
	How to read the User Guide
	Component Overview
	User Guide Overview

	Step-by-step guide
	Setting up the environment
	Using the Setup Script
	Manual Setup

	Generating the CPU core
	Note:

	Synthesizing the system for FPGA instantiation
	Compiling programs
	Examples
	Manual steps

	Run PACO Approximate Applications
	Simulate using the C Emulator
	Simulate using QEMU
	Running Programs on an FPGA Instantiation

	Developer's Guide
	Overview
	Current state of implementation
	Environment
	Compiler
	Hardware: ALU
	Hardware: LUT
	Problems
	Timeframe

	Environment
	Generating the environment
	Original code base
	Modified code
	RISC-V toolchains
	Rocket core
	Rocket SoC
	Rocket SoC bootloader
	RISC-V python library
	RISC-V tests
	QEMU
	Virtual Machine

	Tools
	RISC-V tests
	Testing approximate instructions/hardware

	Rocket Chip C Emulator
	Changes

	QEMU
	Usage
	Modifications done
	Further modification
	Adding new decoding masks
	Adding new major opcodes
	Adding decoder / instruction translation

	UART debug interface (flashing tool)
	UART interface
	UART Out-of-band reset
	Flashing tool
	Modifications

	Rocket SoC Runtime Library
	Program termination
	Library Components
	Template Applications

	Modifications
	Makefile adjustments

	Compiler System
	Original Code Base
	Modified Code
	High-level Code Compilation
	General Modifications
	Parsing and Analysis of the Approx Decorator
	Parsing and Analysis of Pragmas
	Parsing of Approximate Arithmetic and Approximated Functions
	Analysis of Approximate Computations
	Code Generation
	Test Code

	LLVM Translation
	Adding Intrinsics, Translating to Instructions
	Selection DAG, Passes and UUID-Translation

	Machine Code Generation
	Modifying the Assembler

	Lookup Table Compilation
	Usage
	File Formats
	Command-line Options
	Segmentation Strategies (Primary)
	Segmentation Strategies (Secondary)
	Approximation Strategies
	Implementation Overview

	Error Handling and Testing
	Exception classes
	Logging System
	Unit Tests
	System Tests

	Limitations and improvement-worthy parts
	Floating-point Support
	Target Function Evaluation
	Default Strategies

	Approximation Hardware
	Environment in Rocket chip
	Chisel
	Decoder

	LUT
	Overview
	Chisel Interface
	Hardware Core
	Component Overview
	Architecture Parameters
	LUT controller
	Input decoder
	Address translator
	Lookup Table
	Interpolator
	Testing
	Configuration Bitstream

	Design Space
	Parameters, metrics
	Exploration
	Conclusion

	Approximate ALU
	Overview
	Original code base
	Modified Code Base

	Power estimation
	Xilinx Power Analyzer
	Synopsis Tool

	Appendices
	External resources
	QEMU
	Clang/LLVM
	GNU/Binutils
	Chisel
	Scala
	RISC-V
	Rocket Chip
	Rocket SoC

